Press "Enter" to skip to content

Posts published in “Desgin”

花花酱 LeetCode 895. Maximum Frequency Stack

Problem

Implement FreqStack, a class which simulates the operation of a stack-like data structure.

FreqStack has two functions:

  • push(int x), which pushes an integer x onto the stack.
  • pop(), which removes and returns the most frequent element in the stack.
    • If there is a tie for most frequent element, the element closest to the top of the stack is removed and returned.

Example 1:

Input: 
["FreqStack","push","push","push","push","push","push","pop","pop","pop","pop"],
[[],[5],[7],[5],[7],[4],[5],[],[],[],[]]
Output: [null,null,null,null,null,null,null,5,7,5,4]
Explanation:
After making six .push operations, the stack is [5,7,5,7,4,5] from bottom to top.  Then:

pop() -> returns 5, as 5 is the most frequent.
The stack becomes [5,7,5,7,4].

pop() -> returns 7, as 5 and 7 is the most frequent, but 7 is closest to the top.
The stack becomes [5,7,5,4].

pop() -> returns 5.
The stack becomes [5,7,4].

pop() -> returns 4.
The stack becomes [5,7].

Note:

  • Calls to FreqStack.push(int x) will be such that 0 <= x <= 10^9.
  • It is guaranteed that FreqStack.pop() won’t be called if the stack has zero elements.
  • The total number of FreqStack.push calls will not exceed 10000 in a single test case.
  • The total number of FreqStack.pop calls will not exceed 10000 in a single test case.
  • The total number of FreqStack.push and FreqStack.pop calls will not exceed 150000 across all test cases.

 

Solution 1: Buckets

We have n  stacks. The i-th stack has the of elements with freq i when pushed.

We keep tracking the freq of each element.

push(x): stacks[++freq(x)].push(x)  # inc x’s freq and push it onto freq-th stack

pop(): x = stacks[max_freq].pop(), –freq(x); # pop element x from the max_freq stack and dec it’s freq.

Time complexity: O(1) push / pop

Space complexity: O(n)

C++

Solution2: Priority Queue

Use a max heap with key: (freq, seq), the max freq and closest to the top of stack element will be extracted first.

Time complexity: O(logn)

Space complexity: O(n)

C++

Related Problems

花花酱 LeetCode 872. Implement Rand10() Using Rand7()

Problem

Given a function rand7 which generates a uniform random integer in the range 1 to 7, write a function rand10 which generates a uniform random integer in the range 1 to 10.

Do NOT use system’s Math.random().

Example 1:

Input: 1
Output: [7]

Example 2:

Input: 2
Output: [8,4]

Example 3:

Input: 3
Output: [8,1,10]

Note:

  1. rand7 is predefined.
  2. Each testcase has one argument: n, the number of times that rand10 is called.

Solution: Math

Time complexity: O(49/40) = O(1)

Time complexity: O(7/6 + 7 / 5) = O(1)

 

花花酱 LeetCode 622. Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

  • MyCircularQueue(k): Constructor, set the size of the queue to be k.
  • Front: Get the front item from the queue. If the queue is empty, return -1.
  • Rear: Get the last item from the queue. If the queue is empty, return -1.
  • enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
  • deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
  • isEmpty(): Checks whether the circular queue is empty or not.
  • isFull(): Checks whether the circular queue is full or not.

Example:

MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1);  // return true
circularQueue.enQueue(2);  // return true
circularQueue.enQueue(3);  // return true
circularQueue.enQueue(4);  // return false, the queue is full
circularQueue.Rear();  // return 3
circularQueue.isFull();  // return true
circularQueue.deQueue();  // return true
circularQueue.enQueue(4);  // return true
circularQueue.Rear();  // return 4

Note:

  • All values will be in the range of [0, 1000].
  • The number of operations will be in the range of [1, 1000].
  • Please do not use the built-in Queue library.

Solution: Simulate with an array

We need a fixed length array, and the head location as well as the size of the current queue.

We can use q[head] to access the front, and q[(head + size – 1) % k] to access the rear.

Time complexity: O(1) for all the operations.
Space complexity: O(k)

C++

Java

Python3