Problem:
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
Idea:
Dynamic programming
Solution 0: O(n^5)
Solution 1: O(n^3)
Solution 2: O(n^2)

Solution 1:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | // Author: Huahua // Time complexity: O(n^3) // Running time: 39 ms class Solution { public:     int maximalSquare(vector<vector<char>>& matrix) {         if (matrix.empty()) return 0;         int m = matrix.size();         int n = matrix[0].size();         // sums[i][j] = sum(matrix[0][0] ~ matrix[i-1][j-1])         vector<vector<int>> sums(m + 1, vector<int>(n + 1, 0));         for (int i = 1; i <= m; ++i)             for (int j = 1; j <= n; ++j)                         sums[i][j] = matrix[i - 1][j - 1] - '0'                               + sums[i - 1][j]                              + sums[i][j - 1]                              - sums[i - 1][j - 1];         int ans = 0;         for (int i = 1; i <= m; ++i)             for (int j = 1; j <= n; ++j)                 for (int k = min(m - i + 1, n - j + 1); k > 0; --k) {                     int sum = sums[i + k - 1][j + k - 1]                             - sums[i + k - 1][j - 1]                             - sums[i - 1][j + k - 1]                             + sums[i - 1][j - 1];                     // full of 1                     if (sum == k*k) {                         ans = max(ans, sum);                         break;                     }                 }         return ans;     } }; | 
Solution 2:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | // Author: Huahua // Time complexity: O(n^2) // Running time: 6 ms class Solution { public:     int maximalSquare(vector<vector<char>>& matrix) {         if (matrix.empty()) return 0;         int m = matrix.size();         int n = matrix[0].size();         vector<vector<int>> sizes(m, vector<int>(n, 0));         int ans = 0;         for (int i = 0; i < m; ++i)             for (int j = 0; j < n; ++j) {                 sizes[i][j] = matrix[i][j] - '0';                 if (!sizes[i][j]) continue;                                             if (i == 0 || j == 0) {                     // do nothing                 } else if (i == 0)                     sizes[i][j] = sizes[i][j - 1] + 1;                 else if (j == 0)                     sizes[i][j] = sizes[i - 1][j] + 1;                 else                     sizes[i][j] = min(min(sizes[i - 1][j - 1],                                            sizes[i - 1][j]),                                           sizes[i][j - 1]) + 1;                 ans = max(ans, sizes[i][j]*sizes[i][j]);             }         return ans;     } }; | 
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.






Be First to Comment