Given an N x N grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized and return the distance.

The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1)is |x0 - x1| + |y0 - y1|.

If no land or water exists in the grid, return -1.

Example 1:

Input: [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation:
The cell (1, 1) is as far as possible from all the land with distance 2.


Example 2:

Input: [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation:
The cell (2, 2) is as far as possible from all the land with distance 4.


Note:

1. 1 <= grid.length == grid.length <= 100
2. grid[i][j] is 0 or 1

## Solution: BFS

Put all land cells into a queue as source nodes and BFS for water cells, the last expanded one will be the farthest.

Time compleixty: O(n^2)
Space complexity: O(n^2)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 