You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.

Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.

Return a 2D array representing any matrix that fulfills the requirements. It’s guaranteed that at least one matrix that fulfills the requirements exists.

Example 1:

Input: rowSum = [3,8], colSum = [4,7]
Output: [[3,0],
[1,7]]
Explanation:
0th row: 3 + 0 = 0 == rowSum[0]
1st row: 1 + 7 = 8 == rowSum[1]
0th column: 3 + 1 = 4 == colSum[0]
1st column: 0 + 7 = 7 == colSum[1]
The row and column sums match, and all matrix elements are non-negative.
Another possible matrix is: [[1,2],
[3,5]]


Example 2:

Input: rowSum = [5,7,10], colSum = [8,6,8]
Output: [[0,5,0],
[6,1,0],
[2,0,8]]


Example 3:

Input: rowSum = [14,9], colSum = [6,9,8]
Output: [[0,9,5],
[6,0,3]]


Example 4:

Input: rowSum = [1,0], colSum = [1]
Output: [[1],
[0]]


Example 5:

Input: rowSum = [0], colSum = [0]
Output: [[0]]


Constraints:

• 1 <= rowSum.length, colSum.length <= 500
• 0 <= rowSum[i], colSum[i] <= 108
• sum(rows) == sum(columns)

## Solution: Greedy

Let a = min(row[i], col[j]), m[i][j] = a, row[i] -= a, col[j] -=a

Time complexity: O(m*n)
Space complexity: O(m*n)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode