Press "Enter" to skip to content

You are playing a solitaire game with three piles of stones of sizes a​​​​​​, b,​​​​​​ and c​​​​​​ respectively. Each turn you choose two different non-empty piles, take one stone from each, and add 1 point to your score. The game stops when there are fewer than two non-empty piles (meaning there are no more available moves).

Given three integers a​​​​​, b,​​​​​ and c​​​​​, return the maximum score you can get.

Example 1:

Input: a = 2, b = 4, c = 6
Output: 6
Explanation: The starting state is (2, 4, 6). One optimal set of moves is:
- Take from 1st and 3rd piles, state is now (1, 4, 5)
- Take from 1st and 3rd piles, state is now (0, 4, 4)
- Take from 2nd and 3rd piles, state is now (0, 3, 3)
- Take from 2nd and 3rd piles, state is now (0, 2, 2)
- Take from 2nd and 3rd piles, state is now (0, 1, 1)
- Take from 2nd and 3rd piles, state is now (0, 0, 0)
There are fewer than two non-empty piles, so the game ends. Total: 6 points.


Example 2:

Input: a = 4, b = 4, c = 6
Output: 7
Explanation: The starting state is (4, 4, 6). One optimal set of moves is:
- Take from 1st and 2nd piles, state is now (3, 3, 6)
- Take from 1st and 3rd piles, state is now (2, 3, 5)
- Take from 1st and 3rd piles, state is now (1, 3, 4)
- Take from 1st and 3rd piles, state is now (0, 3, 3)
- Take from 2nd and 3rd piles, state is now (0, 2, 2)
- Take from 2nd and 3rd piles, state is now (0, 1, 1)
- Take from 2nd and 3rd piles, state is now (0, 0, 0)
There are fewer than two non-empty piles, so the game ends. Total: 7 points.


Example 3:

Input: a = 1, b = 8, c = 8
Output: 8
Explanation: One optimal set of moves is to take from the 2nd and 3rd piles for 8 turns until they are empty.
After that, there are fewer than two non-empty piles, so the game ends.


Constraints:

• 1 <= a, b, c <= 105

## Solution 1: Greedy

Take two stones (one each) from the largest two piles, until one is empty.

Time complexity: O(n)
Space complexity: O(1)

## Solution 2: Math

First, let’s assuming a <= b <= c.
There are two conditions:
1. a + b <= c, we can pair c with a first and then b. Total pairs is (a + b + (a + b)) / 2
2. a + b > c, we can pair c with a, b “evenly”, and then pair a with b, total pairs is (a + b + c) / 2

ans = (a + b + min(a + b, c)) / 2

Time complexity: O(1)
Space complexity: O(1)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode