You are given an integer finalSum. Split it into a sum of a maximum number of unique positive even integers.

• For example, given finalSum = 12, the following splits are valid (unique positive even integers summing up to finalSum): (12)(2 + 10)(2 + 4 + 6), and (4 + 8). Among them, (2 + 4 + 6) contains the maximum number of integers. Note that finalSum cannot be split into (2 + 2 + 4 + 4) as all the numbers should be unique.

Return a list of integers that represent a valid split containing a maximum number of integers. If no valid split exists for finalSum, return an empty list. You may return the integers in any order.

Example 1:

Input: finalSum = 12
Output: [2,4,6]
Explanation: The following are valid splits: (12), (2 + 10), (2 + 4 + 6), and (4 + 8).
(2 + 4 + 6) has the maximum number of integers, which is 3. Thus, we return [2,4,6].
Note that [2,6,4], [6,2,4], etc. are also accepted.


Example 2:

Input: finalSum = 7
Output: []
Explanation: There are no valid splits for the given finalSum.
Thus, we return an empty array.


Example 3:

Input: finalSum = 28
Output: [6,8,2,12]
Explanation: The following are valid splits: (2 + 26), (6 + 8 + 2 + 12), and (4 + 24).
(6 + 8 + 2 + 12) has the maximum number of integers, which is 4. Thus, we return [6,8,2,12].
Note that [10,2,4,12], [6,2,4,16], etc. are also accepted.


Constraints:

• 1 <= finalSum <= 1010

## Solution: Greedy

The get the maximum number of elements, we must use the smallest numbers.

[2, 4, 6, …, 2k, x], where x > 2k
let s = 2 + 4 + … + 2k, x = num – s
since num is odd and s is also odd, so thus x = num – s.

Time complexity: O(sqrt(num)) for constructing outputs.
Space complexity: O(1)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode