Press "Enter" to skip to content

花花酱 LeetCode 1865. Finding Pairs With a Certain Sum

You are given two integer arrays nums1 and nums2. You are tasked to implement a data structure that supports queries of two types:

  1. Add a positive integer to an element of a given index in the array nums2.
  2. Count the number of pairs (i, j) such that nums1[i] + nums2[j] equals a given value (0 <= i < nums1.length and 0 <= j < nums2.length).

Implement the FindSumPairs class:

  • FindSumPairs(int[] nums1, int[] nums2) Initializes the FindSumPairs object with two integer arrays nums1 and nums2.
  • void add(int index, int val) Adds val to nums2[index], i.e., apply nums2[index] += val.
  • int count(int tot) Returns the number of pairs (i, j) such that nums1[i] + nums2[j] == tot.

Example 1:

Input
["FindSumPairs", "count", "add", "count", "count", "add", "add", "count"]
[[[1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]], [7], [3, 2], [8], [4], [0, 1], [1, 1], [7]]
Output
[null, 8, null, 2, 1, null, null, 11]
Explanation
FindSumPairs findSumPairs = new FindSumPairs([1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]);
findSumPairs.count(7); // return 8; pairs (2,2), (3,2), (4,2), (2,4), (3,4), (4,4) make 2 + 5 and pairs (5,1), (5,5) make 3 + 4
findSumPairs.add(3, 2); // now nums2 = [1,4,5,4,5,4] 
findSumPairs.count(8); // return 2; pairs (5,2), (5,4) make 3 + 5 
findSumPairs.count(4); // return 1; pair (5,0) makes 3 + 1 
findSumPairs.add(0, 1); // now nums2 = [2,4,5,4,5,4] 
findSumPairs.add(1, 1); // now nums2 = [2,5,5,4,5,4] 
findSumPairs.count(7); // return 11; pairs (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,4) make 2 + 5 and pairs (5,3), (5,5) make 3 + 4

Constraints:

  • 1 <= nums1.length <= 1000
  • 1 <= nums2.length <= 105
  • 1 <= nums1[i] <= 109
  • 1 <= nums2[i] <= 105
  • 0 <= index < nums2.length
  • 1 <= val <= 105
  • 1 <= tot <= 109
  • At most 1000 calls are made to add and count each.

Solution: HashTable

Note nums1 and nums2 are unbalanced. Brute force method will take O(m*n) = O(103*105) = O(108) for each count call which will TLE. We could use a hashtable to store the counts of elements from nums2, and only iterate over nums1 to reduce the time complexity.

Time complexity:

init: O(m) + O(n)
add: O(1)
count: O(m)

Total time is less than O(106)

Space complexity: O(m + n)

C++

Python3

请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website
您可以通过在亚马逊上购物(任意商品)来支持我们

Paypal
Venmo
huahualeetcode
微信打赏

Be First to Comment

Leave a Reply