Given the head
of a singly linked list, sort the list using insertion sort, and return the sorted list’s head.
The steps of the insertion sort algorithm:
- Insertion sort iterates, consuming one input element each repetition and growing a sorted output list.
- At each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list and inserts it there.
- It repeats until no input elements remain.
The following is a graphical example of the insertion sort algorithm. The partially sorted list (black) initially contains only the first element in the list. One element (red) is removed from the input data and inserted in-place into the sorted list with each iteration.
Example 1:
Input: head = [4,2,1,3] Output: [1,2,3,4]
Example 2:
Input: head = [-1,5,3,4,0] Output: [-1,0,3,4,5]
Constraints:
- The number of nodes in the list is in the range
[1, 5000]
. -5000 <= Node.val <= 5000
Solution: Scan from head
For each node, scan from head of the list to find the insertion position in O(n), and adjust pointers.
Time complexity: O(n2)
Space complexity: O(1)
C++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
// Author: Huahua class Solution { public: ListNode* insertionSortList(ListNode* head) { ListNode dummy; while (head) { ListNode* iter = &dummy; while (iter->next && head->val > iter->next->val) iter = iter->next; ListNode* next = head->next; head->next = iter->next; iter->next = head; head = next; } return dummy.next; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.
Be First to Comment