Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1541. Minimum Insertions to Balance a Parentheses String

Given a parentheses string s containing only the characters '(' and ')'. A parentheses string is balanced if:

  • Any left parenthesis '(' must have a corresponding two consecutive right parenthesis '))'.
  • Left parenthesis '(' must go before the corresponding two consecutive right parenthesis '))'.

For example, "())""())(())))" and "(())())))" are balanced, ")()""()))" and "(()))" are not balanced.

You can insert the characters ‘(‘ and ‘)’ at any position of the string to balance it if needed.

Return the minimum number of insertions needed to make s balanced.

Example 1:

Input: s = "(()))"
Output: 1
Explanation: The second '(' has two matching '))', but the first '(' has only ')' matching. We need to to add one more ')' at the end of the string to be "(())))" which is balanced.

Example 2:

Input: s = "())"
Output: 0
Explanation: The string is already balanced.

Example 3:

Input: s = "))())("
Output: 3
Explanation: Add '(' to match the first '))', Add '))' to match the last '('.

Example 4:

Input: s = "(((((("
Output: 12
Explanation: Add 12 ')' to balance the string.

Example 5:

Input: s = ")))))))"
Output: 5
Explanation: Add 4 '(' at the beginning of the string and one ')' at the end. The string becomes "(((())))))))".

Constraints:

  • 1 <= s.length <= 10^5
  • s consists of '(' and ')' only.

Solution: Counting

Count how many close parentheses we need.

  1. if s[i] is ‘)’, we decrease the counter.
    1. if counter becomes negative, means we need to insert ‘(‘
      1. increase ans by 1, increase the counter by 2, we need one more ‘)’
      2. ‘)’ -> ‘()’
  2. if s[i] is ‘(‘
    1. if we have an odd counter, means there is a unbalanced ‘)’ e.g. ‘(()(‘, counter is 3
      1. need to insert ‘)’, decrease counter, increase ans
      2. ‘(()(‘ -> ‘(())(‘, counter = 2
    2. increase counter by 2, each ‘(‘ needs two ‘)’s. ‘(())(‘ -> counter = 4
  3. Once done, if counter is greater than zero, we need insert that much ‘)s’
    1. counter = 5, ‘((()’ -> ‘((())))))’

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1540. Can Convert String in K Moves

Given two strings s and t, your goal is to convert s into t in kmoves or less.

During the ith (1 <= i <= k) move you can:

  • Choose any index j (1-indexed) from s, such that 1 <= j <= s.length and j has not been chosen in any previous move, and shift the character at that index i times.
  • Do nothing.

Shifting a character means replacing it by the next letter in the alphabet (wrapping around so that 'z' becomes 'a'). Shifting a character by i means applying the shift operations i times.

Remember that any index j can be picked at most once.

Return true if it’s possible to convert s into t in no more than k moves, otherwise return false.

Example 1:

Input: s = "input", t = "ouput", k = 9
Output: true
Explanation: In the 6th move, we shift 'i' 6 times to get 'o'. And in the 7th move we shift 'n' to get 'u'.

Example 2:

Input: s = "abc", t = "bcd", k = 10
Output: false
Explanation: We need to shift each character in s one time to convert it into t. We can shift 'a' to 'b' during the 1st move. However, there is no way to shift the other characters in the remaining moves to obtain t from s.

Example 3:

Input: s = "aab", t = "bbb", k = 27
Output: true
Explanation: In the 1st move, we shift the first 'a' 1 time to get 'b'. In the 27th move, we shift the second 'a' 27 times to get 'b'.

Constraints:

  • 1 <= s.length, t.length <= 10^5
  • 0 <= k <= 10^9
  • st contain only lowercase English letters.

Solution: HashTable

Count how many times a d-shift has occurred.
a -> c is a 2-shift, z -> b is also 2-shift
a -> d is a 3-shift
a -> a is a 0-shift that we can skip
if a d-shift happened for the first time, we need at least d moves
However, if it happened for c times, we need at least d + 26 * c moves
e.g. we can do a 2-shift at the 2nd move, do another one at 2 + 26 = 28th move and do another at 2 + 26*2 = 54th move, and so on.
Need to find maximum move we need and make sure that one is <= k.
Since we can pick any index to shift, so the order doesn’t matter. We can start from left to right.

Time complexity: O(n)
Space complexity: O(26) = O(1)

C++

花花酱 LeetCode 1539. Kth Missing Positive Number

Given an array arr of positive integers sorted in a strictly increasing order, and an integer k.

Find the kth positive integer that is missing from this array.

Example 1:

Input: arr = [2,3,4,7,11], k = 5
Output: 9
Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The 5th missing positive integer is 9.

Example 2:

Input: arr = [1,2,3,4], k = 2
Output: 6
Explanation: The missing positive integers are [5,6,7,...]. The 2nd missing positive integer is 6.

Constraints:

  • 1 <= arr.length <= 1000
  • 1 <= arr[i] <= 1000
  • 1 <= k <= 1000
  • arr[i] < arr[j] for 1 <= i < j <= arr.length

Solution 1: HashTable

Store all the elements into a hashtable, and check from 1 to max(arr).

Time complexity: O(max(arr)) ~ O(1000)
Space complexity: O(n)

C++

Solution 2: Binary Search

We can find the smallest index l using binary search, s.t.
arr[l] – l + 1 >= k
which means we missed at least k numbers at index l.
And the answer will be l + k.

Time complexity: O(logn)
Space complexity: O(1)

C++

Java

Python3

花花酱 LeetCode 1537. Get the Maximum Score

You are given two sorted arrays of distinct integers nums1 and nums2.

validpath is defined as follows:

  • Choose array nums1 or nums2 to traverse (from index-0).
  • Traverse the current array from left to right.
  • If you are reading any value that is present in nums1 and nums2 you are allowed to change your path to the other array. (Only one repeated value is considered in the valid path).

Score is defined as the sum of uniques values in a valid path.

Return the maximum score you can obtain of all possible valid paths.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: nums1 = [2,4,5,8,10], nums2 = [4,6,8,9]
Output: 30
Explanation: Valid paths:
[2,4,5,8,10], [2,4,5,8,9], [2,4,6,8,9], [2,4,6,8,10],  (starting from nums1)
[4,6,8,9], [4,5,8,10], [4,5,8,9], [4,6,8,10]    (starting from nums2)
The maximum is obtained with the path in green [2,4,6,8,10].

Example 2:

Input: nums1 = [1,3,5,7,9], nums2 = [3,5,100]
Output: 109
Explanation: Maximum sum is obtained with the path [1,3,5,100].

Example 3:

Input: nums1 = [1,2,3,4,5], nums2 = [6,7,8,9,10]
Output: 40
Explanation: There are no common elements between nums1 and nums2.
Maximum sum is obtained with the path [6,7,8,9,10].

Example 4:

Input: nums1 = [1,4,5,8,9,11,19], nums2 = [2,3,4,11,12]
Output: 61

Constraints:

  • 1 <= nums1.length <= 10^5
  • 1 <= nums2.length <= 10^5
  • 1 <= nums1[i], nums2[i] <= 10^7
  • nums1 and nums2 are strictly increasing.

Solution: Two Pointers + DP

Since numbers are strictly increasing, we can always traverse the smaller one using two pointers.
Traversing ([2,4,5,8,10], [4,6,8,10])
will be like [2, 4/4, 5, 6, 8, 10/10]
It two nodes have the same value, we have two choices and pick the larger one, then both move nodes one step forward. Otherwise, the smaller node moves one step forward.
dp1[i] := max path sum ends with nums1[i-1]
dp2[j] := max path sum ends with nums2[j-1]
if nums[i -1] == nums[j – 1]:
dp1[i] = dp2[j] = max(dp[i-1], dp[j-1]) + nums[i -1]
i += 1, j += 1
else if nums[i – 1] < nums[j – 1]:
dp[i] = dp[i-1] + nums[i -1]
i += 1
else if nums[j – 1] < nums[i – 1]:
dp[j] = dp[j-1] + nums[j -1]
j += 1
return max(dp1[-1], dp2[-1])

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

Java

python3

花花酱 LeetCode 1536. Minimum Swaps to Arrange a Binary Grid

Given an n x n binary grid, in one step you can choose two adjacent rows of the grid and swap them.

A grid is said to be valid if all the cells above the main diagonal are zeros.

Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.

The main diagonal of a grid is the diagonal that starts at cell (1, 1) and ends at cell (n, n).

Example 1:

Input: grid = [[0,0,1],[1,1,0],[1,0,0]]
Output: 3

Example 2:

Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.

Example 3:

Input: grid = [[1,0,0],[1,1,0],[1,1,1]]
Output: 0

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 200
  • grid[i][j] is 0 or 1

Solution: Bubble Sort

Counting how many tailing zeros each row has.
Then input
[0, 0, 1]
[1, 1, 0]
[1, 0, 0]
becomes [0, 1, 2]
For i-th row, it needs n – i – 1 tailing zeros.
We need to find the first row that has at least n – i – 1 tailing zeros and bubbling it up to the i-th row. This process is very similar to bubble sort.
[0, 1, 2] -> [0, 2, 1] -> [2, 0, 1]
[2, 0, 1] -> [2, 1, 0]
Total 3 swaps.

Time complexity: O(n)
Space complexity: O(n)

C++