Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1376. Time Needed to Inform All Employees

A company has n employees with a unique ID for each employee from 0 to n - 1. The head of the company has is the one with headID.

Each employee has one direct manager given in the manager array where manager[i] is the direct manager of the i-th employee, manager[headID] = -1. Also it’s guaranteed that the subordination relationships have a tree structure.

The head of the company wants to inform all the employees of the company of an urgent piece of news. He will inform his direct subordinates and they will inform their subordinates and so on until all employees know about the urgent news.

The i-th employee needs informTime[i] minutes to inform all of his direct subordinates (i.e After informTime[i] minutes, all his direct subordinates can start spreading the news).

Return the number of minutes needed to inform all the employees about the urgent news.

Example 1:

Input: n = 1, headID = 0, manager = [-1], informTime = [0]
Output: 0
Explanation: The head of the company is the only employee in the company.

Example 2:

Input: n = 6, headID = 2, manager = [2,2,-1,2,2,2], informTime = [0,0,1,0,0,0]
Output: 1
Explanation: The head of the company with id = 2 is the direct manager of all the employees in the company and needs 1 minute to inform them all.
The tree structure of the employees in the company is shown.

Example 3:

Input: n = 7, headID = 6, manager = [1,2,3,4,5,6,-1], informTime = [0,6,5,4,3,2,1]
Output: 21
Explanation: The head has id = 6. He will inform employee with id = 5 in 1 minute.
The employee with id = 5 will inform the employee with id = 4 in 2 minutes.
The employee with id = 4 will inform the employee with id = 3 in 3 minutes.
The employee with id = 3 will inform the employee with id = 2 in 4 minutes.
The employee with id = 2 will inform the employee with id = 1 in 5 minutes.
The employee with id = 1 will inform the employee with id = 0 in 6 minutes.
Needed time = 1 + 2 + 3 + 4 + 5 + 6 = 21.

Example 4:

Input: n = 15, headID = 0, manager = [-1,0,0,1,1,2,2,3,3,4,4,5,5,6,6], informTime = [1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
Output: 3
Explanation: The first minute the head will inform employees 1 and 2.
The second minute they will inform employees 3, 4, 5 and 6.
The third minute they will inform the rest of employees.

Example 5:

Input: n = 4, headID = 2, manager = [3,3,-1,2], informTime = [0,0,162,914]
Output: 1076

Constraints:

  • 1 <= n <= 10^5
  • 0 <= headID < n
  • manager.length == n
  • 0 <= manager[i] < n
  • manager[headID] == -1
  • informTime.length == n
  • 0 <= informTime[i] <= 1000
  • informTime[i] == 0 if employee i has no subordinates.
  • It is guaranteed that all the employees can be informed.

Solution 1: Build the graph + DFS

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 2: Recursion with memoization

Time complexity: O(n)
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 1375. Bulb Switcher III

There is a room with n bulbs, numbered from 1 to n, arranged in a row from left to right. Initially, all the bulbs are turned off.

At moment k (for k from 0 to n - 1), we turn on the light[k] bulb. A bulb change color to blue only if it is on and all the previous bulbs (to the left) are turned on too.

Return the number of moments in which all turned on bulbs are blue.

Example 1:

Input: light = [2,1,3,5,4]
Output: 3
Explanation: All bulbs turned on, are blue at the moment 1, 2 and 4.

Example 2:

Input: light = [3,2,4,1,5]
Output: 2
Explanation: All bulbs turned on, are blue at the moment 3, and 4 (index-0).

Example 3:

Input: light = [4,1,2,3]
Output: 1
Explanation: All bulbs turned on, are blue at the moment 3 (index-0).
Bulb 4th changes to blue at the moment 3.

Example 4:

Input: light = [2,1,4,3,6,5]
Output: 3

Example 5:

Input: light = [1,2,3,4,5,6]
Output: 6

Constraints:

  • n == light.length
  • 1 <= n <= 5 * 10^4
  • light is a permutation of  [1, 2, ..., n]

Solution

Track the right most light l_k, all turned-on lights are blue if and only if the right most one is k, and there are exact k lights on right now.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1374. Generate a String With Characters That Have Odd Counts

Given an integer nreturn a string with n characters such that each character in such string occurs an odd number of times.

The returned string must contain only lowercase English letters. If there are multiples valid strings, return any of them.  

Example 1:

Input: n = 4
Output: "pppz"
Explanation: "pppz" is a valid string since the character 'p' occurs three times and the character 'z' occurs once. Note that there are many other valid strings such as "ohhh" and "love".

Example 2:

Input: n = 2
Output: "xy"
Explanation: "xy" is a valid string since the characters 'x' and 'y' occur once. Note that there are many other valid strings such as "ag" and "ur".

Example 3:

Input: n = 7
Output: "holasss"

Constraints:

  • 1 <= n <= 500

Solution: Greedy

if n is odd, return n ‘a’s.
otherwise, return n -1 ‘a’s and 1 ‘b’

Time complexity: O(n)
Space complexity: O(n) or O(1)

C++

Python3

花花酱 LeetCode 1373. Maximum Sum BST in Binary Tree

Given a binary tree root, the task is to return the maximum sum of all keys of any sub-tree which is also a Binary Search Tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]
Output: 20
Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.

Example 2:

Input: root = [4,3,null,1,2]
Output: 2
Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.

Example 3:

Input: root = [-4,-2,-5]
Output: 0
Explanation: All values are negatives. Return an empty BST.

Example 4:

Input: root = [2,1,3]
Output: 6

Example 5:

Input: root = [5,4,8,3,null,6,3]
Output: 7

Constraints:

  • Each tree has at most 40000 nodes..
  • Each node’s value is between [-4 * 10^4 , 4 * 10^4].

Solution: Recursion

Time complexity: O(n)
Space complexity: O(h)

C++

Python3

花花酱 LeetCode 1372. Longest ZigZag Path in a Binary Tree

Given a binary tree root, a ZigZag path for a binary tree is defined as follow:

  • Choose any node in the binary tree and a direction (right or left).
  • If the current direction is right then move to the right child of the current node otherwise move to the left child.
  • Change the direction from right to left or right to left.
  • Repeat the second and third step until you can’t move in the tree.

Zigzag length is defined as the number of nodes visited – 1. (A single node has a length of 0).

Return the longest ZigZag path contained in that tree.

Example 1:

Input: root = [1,null,1,1,1,null,null,1,1,null,1,null,null,null,1,null,1]
Output: 3
Explanation: Longest ZigZag path in blue nodes (right -> left -> right).

Example 2:

Input: root = [1,1,1,null,1,null,null,1,1,null,1]
Output: 4
Explanation: Longest ZigZag path in blue nodes (left -> right -> left -> right).

Example 3:

Input: root = [1]
Output: 0

Constraints:

  • Each tree has at most 50000 nodes..
  • Each node’s value is between [1, 100].

Solution: Recursion

For each node return
1. max ZigZag length if go left
2. max ZigZag length if go right
3. maz ZigZag length within the subtree

ZigZag(root):
ll, lr, lm = ZigZag(root.left)
rl, rr, rm = ZigZag(root.right)
return (lr+1, rl + 1, max(lr+1, rl+1, lm, rm))

Time complexity: O(n)
Space complexity: O(h)

C++

Python3