In an n*n grid, there is a snake that spans 2 cells and starts moving from the top left corner at (0, 0) and (0, 1). The grid has empty cells represented by zeros and blocked cells represented by ones. The snake wants to reach the lower right corner at (n-1, n-2) and (n-1, n-1).
In one move the snake can:
Move one cell to the right if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
Move down one cell if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
Rotate clockwise if it’s in a horizontal position and the two cells under it are both empty. In that case the snake moves from (r, c) and (r, c+1) to (r, c) and (r+1, c).
Rotate counterclockwise if it’s in a vertical position and the two cells to its right are both empty. In that case the snake moves from (r, c) and (r+1, c) to (r, c) and (r, c+1).
Return the minimum number of moves to reach the target.
If there is no way to reach the target, return -1.
Example 1:
Input: grid = [[0,0,0,0,0,1],
[1,1,0,0,1,0],
[0,0,0,0,1,1],
[0,0,1,0,1,0],
[0,1,1,0,0,0],
[0,1,1,0,0,0]]
Output: 11
Explanation:
One possible solution is [right, right, rotate clockwise, right, down, down, down, down, rotate counterclockwise, right, down].
dp[i][j].first = min steps to reach i,j (tail pos) facing right dp[i][j].second = min steps to reach i, j (tail pos) facing down ans = dp[n][n-1].first
Given a string s, a kduplicate removal consists of choosing k adjacent and equal letters from s and removing them causing the left and the right side of the deleted substring to concatenate together.
We repeatedly make k duplicate removals on s until we no longer can.
Return the final string after all such duplicate removals have been made.
It is guaranteed that the answer is unique.
Example 1:
Input: s = "abcd", k = 2
Output: "abcd"
Explanation: There's nothing to delete.
Example 2:
Input: s = "deeedbbcccbdaa", k = 3
Output: "aa"
Explanation:
First delete "eee" and "ccc", get "ddbbbdaa"
Then delete "bbb", get "dddaa"
Finally delete "ddd", get "aa"
Example 3:
Input: s = "pbbcggttciiippooaais", k = 2
Output: "ps"
You are given two strings s and t of the same length. You want to change s to t. Changing the i-th character of s to i-th character of t costs |s[i] - t[i]| that is, the absolute difference between the ASCII values of the characters.
You are also given an integer maxCost.
Return the maximum length of a substring of s that can be changed to be the same as the corresponding substring of twith a cost less than or equal to maxCost.
If there is no substring from s that can be changed to its corresponding substring from t, return 0.
Example 1:
Input: s = "abcd", t = "bcdf", cost = 3
Output: 3
Explanation: "abc" of s can change to "bcd". That costs 3, so the maximum length is 3.
Example 2:
Input: s = "abcd", t = "cdef", cost = 3
Output: 1
Explanation: Each charactor in s costs 2 to change to charactor in t, so the maximum length is 1.
Example 3:
Input: s = "abcd", t = "acde", cost = 0
Output: 1
Explanation: You can't make any change, so the maximum length is 1.