Press "Enter" to skip to content

Huahua's Tech Road

花花酱LeetCode 983. Minimum Cost For Tickets

In a country popular for train travel, you have planned some train travelling one year in advance.  The days of the year that you will travel is given as an array days.  Each day is an integer from 1 to 365.

Train tickets are sold in 3 different ways:

  • a 1-day pass is sold for costs[0] dollars;
  • a 7-day pass is sold for costs[1] dollars;
  • a 30-day pass is sold for costs[2] dollars.

The passes allow that many days of consecutive travel.  For example, if we get a 7-day pass on day 2, then we can travel for 7 days: day 2, 3, 4, 5, 6, 7, and 8.

Return the minimum number of dollars you need to travel every day in the given list of days.

Example 1:

Input: days = [1,4,6,7,8,20], costs = [2,7,15]
Output: 11
Explanation: 
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1.
On day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, ..., 9.
On day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20.
In total you spent $11 and covered all the days of your travel.

Example 2:

Input: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
Output: 17
Explanation: 
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, ..., 30.
On day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31.
In total you spent $17 and covered all the days of your travel.

Note:

  1. 1 <= days.length <= 365
  2. 1 <= days[i] <= 365
  3. days is in strictly increasing order.
  4. costs.length == 3
  5. 1 <= costs[i] <= 1000

Solution: DP

dp[i] := min cost to cover the i-th day
dp[0] = 0
dp[i] = min(dp[i – 1] + costs[0], dp[i – 7] + costs[1], dp[i – 30] + costs[2])

C++

Python

花花酱 LeetCode 982. Triples with Bitwise AND Equal To Zero

Given an array of integers A, find the number of triples of indices (i, j, k) such that:

  • 0 <= i < A.length
  • 0 <= j < A.length
  • 0 <= k < A.length
  • A[i] & A[j] & A[k] == 0, where & represents the bitwise-AND operator.

Example 1:

Input: [2,1,3]
Output: 12
Explanation: We could choose the following i, j, k triples:
(i=0, j=0, k=1) : 2 & 2 & 1
(i=0, j=1, k=0) : 2 & 1 & 2
(i=0, j=1, k=1) : 2 & 1 & 1
(i=0, j=1, k=2) : 2 & 1 & 3
(i=0, j=2, k=1) : 2 & 3 & 1
(i=1, j=0, k=0) : 1 & 2 & 2
(i=1, j=0, k=1) : 1 & 2 & 1
(i=1, j=0, k=2) : 1 & 2 & 3
(i=1, j=1, k=0) : 1 & 1 & 2
(i=1, j=2, k=0) : 1 & 3 & 2
(i=2, j=0, k=1) : 3 & 2 & 1
(i=2, j=1, k=0) : 3 & 1 & 2

Note:

  1. 1 <= A.length <= 1000
  2. 0 <= A[i] < 2^16

Solution: Counting

Time complexity: O(n^2 + n * max(A))
Space complexity: O(max(A))

C++

花花酱 LeetCode 981. Time Based Key-Value Store

Create a timebased key-value store class TimeMap, that supports two operations.

1. set(string key, string value, int timestamp)

  • Stores the key and value, along with the given timestamp.

2. get(string key, int timestamp)

  • Returns a value such that set(key, value, timestamp_prev) was called previously, with timestamp_prev <= timestamp.
  • If there are multiple such values, it returns the one with the largest timestamp_prev.
  • If there are no values, it returns the empty string ("").

Example 1:

Input: inputs = ["TimeMap","set","get","get","set","get","get"], inputs = [[],["foo","bar",1],["foo",1],["foo",3],["foo","bar2",4],["foo",4],["foo",5]]
Output: [null,null,"bar","bar",null,"bar2","bar2"]
Explanation:   
TimeMap kv;   
kv.set("foo", "bar", 1); // store the key "foo" and value "bar" along with timestamp = 1   
kv.get("foo", 1);  // output "bar"   
kv.get("foo", 3); // output "bar" since there is no value corresponding to foo at timestamp 3 and timestamp 2, then the only value is at timestamp 1 ie "bar"   
kv.set("foo", "bar2", 4);   
kv.get("foo", 4); // output "bar2"   
kv.get("foo", 5); //output "bar2"   

Example 2:

Input: inputs = ["TimeMap","set","set","get","get","get","get","get"], inputs = [[],["love","high",10],["love","low",20],["love",5],["love",10],["love",15],["love",20],["love",25]]
Output: [null,null,null,"","high","high","low","low"]

Note:

  1. All key/value strings are lowercase.
  2. All key/value strings have length in the range [1, 100]
  3. The timestamps for all TimeMap.set operations are strictly increasing.
  4. 1 <= timestamp <= 10^7
  5. TimeMap.set and TimeMap.get functions will be called a total of 120000 times (combined) per test case.

Solution: HashTable + Map

C++

花花酱 LeetCode 85. Maximal Rectangle

Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

Example:

Input:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
Output: 6

Solution: DP

Time complexity: O(m^2*n)
Space complexity: O(mn)

dp[i][j] := max length of all 1 sequence ends with col j, at the i-th row.
transition:
dp[i][j] = 0 if matrix[i][j] == ‘0’
= dp[i][j-1] + 1 if matrix[i][j] == ‘1’

C++

花花酱 LeetCode 980. Unique Paths III

On a 2-dimensional grid, there are 4 types of squares:

  • 1 represents the starting square.  There is exactly one starting square.
  • 2 represents the ending square.  There is exactly one ending square.
  • 0 represents empty squares we can walk over.
  • -1 represents obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example 1:

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

Example 2:

Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

Example 3:

Input: [[0,1],[2,0]]
Output: 0
Explanation: 
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.

Note:

  1. 1 <= grid.length * grid[0].length <= 20

count how many empty blocks there are and try all possible paths to end point and check whether we visited every empty blocks or not.

Solution: Brute force / DP

C++/DFS

C++/DP