Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2. Add Two Numbers

Problem

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Example

Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.

Solution: Simulation

Simulate the addition, draw two numbers (one each) from l1, l2, if list is empty draw 0.

Using a dummy head makes things easier.

Time complexity: O(max(l1,l2))

Space complexity: O(max(l1,l2))

C++

Java

Python3

Related Problems

花花酱 LeetCode 785. Is Graph Bipartite?

Video is for 花花酱 LeetCode 886. Possible Bipartition, but the algorithm is exact the same.

Problem

https://leetcode.com/problems/is-graph-bipartite/

Given an undirected graph, return true if and only if it is bipartite.

Recall that a graph is bipartite if we can split it’s set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.  Each node is an integer between 0 and graph.length - 1.  There are no self edges or parallel edges: graph[i] does not contain i, and it doesn’t contain any element twice.

Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation: 
The graph looks like this:
0----1
|    |
|    |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation: 
The graph looks like this:
0----1
| \  |
|  \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.

 

Note:

  • graph will have length in range [1, 100].
  • graph[i] will contain integers in range [0, graph.length - 1].
  • graph[i] will not contain i or duplicate values.
  • The graph is undirected: if any element j is in graph[i], then i will be in graph[j].

Solution: Graph Coloring

For each node

  • If has not been colored, color it to RED(1).
  • Color its neighbors with a different color RED(1) to BLUE(-1) or BLUE(-1) to RED(-1).

If we can finish the coloring then the graph is bipartite. All red nodes on the left no connections between them and all blues nodes on the right, again no connections between them. red and blue nodes are neighbors.

Time complexity: O(V+E)

Space complexity: O(V)

C++ / DFS

Related Problem

花花酱 LeetCode 875. Koko Eating Bananas

Problem

Koko loves to eat bananas.  There are N piles of bananas, the i-th pile has piles[i] bananas.  The guards have gone and will come back in H hours.

Koko can decide her bananas-per-hour eating speed of K.  Each hour, she chooses some pile of bananas, and eats K bananas from that pile.  If the pile has less than K bananas, she eats all of them instead, and won’t eat any more bananas during this hour.

Koko likes to eat slowly, but still wants to finish eating all the bananas before the guards come back.

Return the minimum integer K such that she can eat all the bananas within H hours.

Example 1:

Input: piles = [3,6,7,11], H = 8
Output: 4

Example 2:

Input: piles = [30,11,23,4,20], H = 5
Output: 30

Example 3:

Input: piles = [30,11,23,4,20], H = 6
Output: 23

Note:

  • 1 <= piles.length <= 10^4
  • piles.length <= H <= 10^9
  • 1 <= piles[i] <= 10^9

Solution: Binary Search

search for the smallest k [1, max_pile_height] such that eating time h <= H.

Time complexity: O(nlogh)

Space complexity: O(1)

 

花花酱 LeetCode 874. Walking Robot Simulation

Problem

A robot on an infinite grid starts at point (0, 0) and faces north.  The robot can receive one of three possible types of commands:

  • -2: turn left 90 degrees
  • -1: turn right 90 degrees
  • 1 <= x <= 9: move forward x units

Some of the grid squares are obstacles.

The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

Return the square of the maximum Euclidean distance that the robot will be from the origin.

Example 1:

Input: commands = [4,-1,3], obstacles = []
Output: 25
Explanation: robot will go to (3, 4)

Example 2:

Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
Output: 65
Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)

Note:

  1. 0 <= commands.length <= 10000
  2. 0 <= obstacles.length <= 10000
  3. -30000 <= obstacle[i][0] <= 30000
  4. -30000 <= obstacle[i][1] <= 30000
  5. The answer is guaranteed to be less than 2 ^ 31.

Solution: Simulation

Time complexity: O(n + sum(x)) = O(n)

Space complexity: O(n)

C++