We are given non-negative integers nums[i] which are written on a chalkboard. Alice and Bob take turns erasing exactly one number from the chalkboard, with Alice starting first. If erasing a number causes the bitwise XOR of all the elements of the chalkboard to become 0, then that player loses. (Also, we’ll say the bitwise XOR of one element is that element itself, and the bitwise XOR of no elements is 0.)
Also, if any player starts their turn with the bitwise XOR of all the elements of the chalkboard equal to 0, then that player wins.
Return True if and only if Alice wins the game, assuming both players play optimally.
Example:Input: nums = [1, 1, 2]
Output: false
Explanation:
Alice has two choices: erase 1 or erase 2.
If she erases 1, the nums array becomes [1, 2]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 2 = 3. Now Bob can remove any element he wants, because Alice will be the one to erase the last element and she will lose.
If Alice erases 2 first, now nums becomes [1, 1]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 1 = 0. Alice will lose.
We have jobs: difficulty[i] is the difficulty of the ith job, and profit[i] is the profit of the ith job.
Now we have some workers. worker[i] is the ability of the ith worker, which means that this worker can only complete a job with difficulty at most worker[i].
Every worker can be assigned at most one job, but one job can be completed multiple times.
For example, if 3 people attempt the same job that pays $1, then the total profit will be $3. If a worker cannot complete any job, his profit is $0.
What is the most profit we can make?
Example 1:
Input: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
Output: 100
Explanation: Workers are assigned jobs of difficulty [4,4,6,6] and they get profit of [20,20,30,30] seperately.
Notes:
1 <= difficulty.length = profit.length <= 10000
1 <= worker.length <= 10000
difficulty[i], profit[i], worker[i] are in range [1, 10^5]
A sentence S is given, composed of words separated by spaces. Each word consists of lowercase and uppercase letters only.
We would like to convert the sentence to “Goat Latin” (a made-up language similar to Pig Latin.)
The rules of Goat Latin are as follows:
If a word begins with a vowel (a, e, i, o, or u), append "ma" to the end of the word.
For example, the word ‘apple’ becomes ‘applema’.
If a word begins with a consonant (i.e. not a vowel), remove the first letter and append it to the end, then add "ma".
For example, the word "goat" becomes "oatgma".
Add one letter 'a' to the end of each word per its word index in the sentence, starting with 1.
For example, the first word gets "a" added to the end, the second word gets "aa" added to the end and so on.
Return the final sentence representing the conversion from S to Goat Latin.
Example 1:
Input: "I speak Goat Latin"
Output: "Imaa peaksmaaa oatGmaaaa atinLmaaaaa"
Example 2:
Input: "The quick brown fox jumped over the lazy dog"
Output: "heTmaa uickqmaaa rownbmaaaa oxfmaaaaa umpedjmaaaaaa overmaaaaaaa hetmaaaaaaaa azylmaaaaaaaaa ogdmaaaaaaaaaa"
Notes:
S contains only uppercase, lowercase and spaces. Exactly one space between each word.