Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2130. Maximum Twin Sum of a Linked List

In a linked list of size n, where n is even, the ith node (0-indexed) of the linked list is known as the twin of the (n-1-i)th node, if 0 <= i <= (n / 2) - 1.

  • For example, if n = 4, then node 0 is the twin of node 3, and node 1 is the twin of node 2. These are the only nodes with twins for n = 4.

The twin sum is defined as the sum of a node and its twin.

Given the head of a linked list with even length, return the maximum twin sum of the linked list.

Example 1:

Input: head = [5,4,2,1]
Output: 6
Explanation:
Nodes 0 and 1 are the twins of nodes 3 and 2, respectively. All have twin sum = 6.
There are no other nodes with twins in the linked list.
Thus, the maximum twin sum of the linked list is 6. 

Example 2:

Input: head = [4,2,2,3]
Output: 7
Explanation:
The nodes with twins present in this linked list are:
- Node 0 is the twin of node 3 having a twin sum of 4 + 3 = 7.
- Node 1 is the twin of node 2 having a twin sum of 2 + 2 = 4.
Thus, the maximum twin sum of the linked list is max(7, 4) = 7. 

Example 3:

Input: head = [1,100000]
Output: 100001
Explanation:
There is only one node with a twin in the linked list having twin sum of 1 + 100000 = 100001.

Constraints:

  • The number of nodes in the list is an even integer in the range [2, 105].
  • 1 <= Node.val <= 105

Solution: Two Pointers + Reverse List

Use fast slow pointers to find the middle point and reverse the second half.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2129. Capitalize the Title

You are given a string title consisting of one or more words separated by a single space, where each word consists of English letters. Capitalize the string by changing the capitalization of each word such that:

  • If the length of the word is 1 or 2 letters, change all letters to lowercase.
  • Otherwise, change the first letter to uppercase and the remaining letters to lowercase.

Return the capitalized title.

Example 1:

Input: title = "capiTalIze tHe titLe"
Output: "Capitalize The Title"
Explanation:
Since all the words have a length of at least 3, the first letter of each word is uppercase, and the remaining letters are lowercase.

Example 2:

Input: title = "First leTTeR of EACH Word"
Output: "First Letter of Each Word"
Explanation:
The word "of" has length 2, so it is all lowercase.
The remaining words have a length of at least 3, so the first letter of each remaining word is uppercase, and the remaining letters are lowercase.

Example 3:

Input: title = "i lOve leetcode"
Output: "i Love Leetcode"
Explanation:
The word "i" has length 1, so it is lowercase.
The remaining words have a length of at least 3, so the first letter of each remaining word is uppercase, and the remaining letters are lowercase.

Constraints:

  • 1 <= title.length <= 100
  • title consists of words separated by a single space without any leading or trailing spaces.
  • Each word consists of uppercase and lowercase English letters and is non-empty.

Solution: Straight forward

Without splitting the sentence into words, we need to take care the word of length one and two.

Tips: use std::tolower, std::toupper to transform letters.

Time complexity: O(n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 2126. Destroying Asteroids

You are given an integer mass, which represents the original mass of a planet. You are further given an integer array asteroids, where asteroids[i] is the mass of the ith asteroid.

You can arrange for the planet to collide with the asteroids in any arbitrary order. If the mass of the planet is greater than or equal to the mass of the asteroid, the asteroid is destroyed and the planet gains the mass of the asteroid. Otherwise, the planet is destroyed.

Return true if all asteroids can be destroyed. Otherwise, return false.

Example 1:

Input: mass = 10, asteroids = [3,9,19,5,21]
Output: true
Explanation: One way to order the asteroids is [9,19,5,3,21]:
- The planet collides with the asteroid with a mass of 9. New planet mass: 10 + 9 = 19
- The planet collides with the asteroid with a mass of 19. New planet mass: 19 + 19 = 38
- The planet collides with the asteroid with a mass of 5. New planet mass: 38 + 5 = 43
- The planet collides with the asteroid with a mass of 3. New planet mass: 43 + 3 = 46
- The planet collides with the asteroid with a mass of 21. New planet mass: 46 + 21 = 67
All asteroids are destroyed.

Example 2:

Input: mass = 5, asteroids = [4,9,23,4]
Output: false
Explanation: 
The planet cannot ever gain enough mass to destroy the asteroid with a mass of 23.
After the planet destroys the other asteroids, it will have a mass of 5 + 4 + 9 + 4 = 22.
This is less than 23, so a collision would not destroy the last asteroid.

Constraints:

  • 1 <= mass <= 105
  • 1 <= asteroids.length <= 105
  • 1 <= asteroids[i] <= 105

Solution: Greedy

Sort asteroids by weight. Note, mass can be very big (105*105), for C++/Java, use long instead of int.

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 2125. Number of Laser Beams in a Bank

Anti-theft security devices are activated inside a bank. You are given a 0-indexed binary string array bank representing the floor plan of the bank, which is an m x n 2D matrix. bank[i] represents the ith row, consisting of '0's and '1's. '0' means the cell is empty, while'1' means the cell has a security device.

There is one laser beam between any two security devices if both conditions are met:

  • The two devices are located on two different rowsr1 and r2, where r1 < r2.
  • For each row i where r1 < i < r2, there are no security devices in the ith row.

Laser beams are independent, i.e., one beam does not interfere nor join with another.

Return the total number of laser beams in the bank.

Example 1:

Input: bank = ["011001","000000","010100","001000"]
Output: 8
Explanation: Between each of the following device pairs, there is one beam. In total, there are 8 beams:
 * bank[0][1] -- bank[2][1]
 * bank[0][1] -- bank[2][3]
 * bank[0][2] -- bank[2][1]
 * bank[0][2] -- bank[2][3]
 * bank[0][5] -- bank[2][1]
 * bank[0][5] -- bank[2][3]
 * bank[2][1] -- bank[3][2]
 * bank[2][3] -- bank[3][2]
Note that there is no beam between any device on the 0th row with any on the 3rd row.
This is because the 2nd row contains security devices, which breaks the second condition.

Example 2:

Input: bank = ["000","111","000"]
Output: 0
Explanation: There does not exist two devices located on two different rows.

Constraints:

  • m == bank.length
  • n == bank[i].length
  • 1 <= m, n <= 500
  • bank[i][j] is either '0' or '1'.

Solution: Rule of product

Just need to remember the # of devices of prev non-empty row.
# of beams between two non-empty row equals to row[i] * row[j]
ans += prev * curr

Time complexity: O(m*n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 2124. Check if All A’s Appears Before All B’s

Given a string s consisting of only the characters 'a' and 'b', return true if every 'a' appears before every 'b' in the string. Otherwise, return false.

Example 1:

Input: s = "aaabbb"
Output: true
Explanation:
The 'a's are at indices 0, 1, and 2, while the 'b's are at indices 3, 4, and 5.
Hence, every 'a' appears before every 'b' and we return true.

Example 2:

Input: s = "abab"
Output: false
Explanation:
There is an 'a' at index 2 and a 'b' at index 1.
Hence, not every 'a' appears before every 'b' and we return false.

Example 3:

Input: s = "bbb"
Output: true
Explanation:
There are no 'a's, hence, every 'a' appears before every 'b' and we return true.

Constraints:

1 <= s.length <= 100

s[i] is either 'a' or 'b'.

Solution: Count bs

Time complexity: O(n)
Space complexity: O(1)

C++