Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2081. Sum of k-Mirror Numbers

k-mirror number is a positive integer without leading zeros that reads the same both forward and backward in base-10 as well as in base-k.

  • For example, 9 is a 2-mirror number. The representation of 9 in base-10 and base-2 are 9 and 1001 respectively, which read the same both forward and backward.
  • On the contrary, 4 is not a 2-mirror number. The representation of 4 in base-2 is 100, which does not read the same both forward and backward.

Given the base k and the number n, return the sum of the n smallest k-mirror numbers.

Example 1:

Input: k = 2, n = 5
Output: 25
Explanation:
The 5 smallest 2-mirror numbers and their representations in base-2 are listed as follows:
  base-10    base-2
    1          1
    3          11
    5          101
    7          111
    9          1001
Their sum = 1 + 3 + 5 + 7 + 9 = 25. 

Example 2:

Input: k = 3, n = 7
Output: 499
Explanation:
The 7 smallest 3-mirror numbers are and their representations in base-3 are listed as follows:
  base-10    base-3
    1          1
    2          2
    4          11
    8          22
    121        11111
    151        12121
    212        21212
Their sum = 1 + 2 + 4 + 8 + 121 + 151 + 212 = 499.

Example 3:

Input: k = 7, n = 17
Output: 20379000
Explanation: The 17 smallest 7-mirror numbers are:
1, 2, 3, 4, 5, 6, 8, 121, 171, 242, 292, 16561, 65656, 2137312, 4602064, 6597956, 6958596

Constraints:

  • 2 <= k <= 9
  • 1 <= n <= 30

Solution: Generate palindromes in base-k.

Python

花花酱 LeetCode 2080. Range Frequency Queries

Design a data structure to find the frequency of a given value in a given subarray.

The frequency of a value in a subarray is the number of occurrences of that value in the subarray.

Implement the RangeFreqQuery class:

  • RangeFreqQuery(int[] arr) Constructs an instance of the class with the given 0-indexed integer array arr.
  • int query(int left, int right, int value) Returns the frequency of value in the subarray arr[left...right].

subarray is a contiguous sequence of elements within an array. arr[left...right] denotes the subarray that contains the elements of nums between indices left and right (inclusive).

Example 1:

Input
["RangeFreqQuery", "query", "query"]
[[[12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]], [1, 2, 4], [0, 11, 33]]
Output

[null, 1, 2]

Explanation RangeFreqQuery rangeFreqQuery = new RangeFreqQuery([12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]); rangeFreqQuery.query(1, 2, 4); // return 1. The value 4 occurs 1 time in the subarray [33, 4] rangeFreqQuery.query(0, 11, 33); // return 2. The value 33 occurs 2 times in the whole array.

Constraints:

  • 1 <= arr.length <= 105
  • 1 <= arr[i], value <= 104
  • 0 <= left <= right < arr.length
  • At most 105 calls will be made to query

Solution: Hashtable + Binary Search

Time complexity: Init: O(max(arr) + n), query: O(logn)
Space complexity: O(max(arr) + n)

C++

花花酱 LeetCode 2079. Watering Plants

You want to water n plants in your garden with a watering can. The plants are arranged in a row and are labeled from 0 to n - 1 from left to right where the ith plant is located at x = i. There is a river at x = -1 that you can refill your watering can at.

Each plant needs a specific amount of water. You will water the plants in the following way:

  • Water the plants in order from left to right.
  • After watering the current plant, if you do not have enough water to completely water the next plant, return to the river to fully refill the watering can.
  • You cannot refill the watering can early.

You are initially at the river (i.e., x = -1). It takes one step to move one unit on the x-axis.

Given a 0-indexed integer array plants of n integers, where plants[i] is the amount of water the ith plant needs, and an integer capacity representing the watering can capacity, return the number of steps needed to water all the plants.

Example 1:

Input: plants = [2,2,3,3], capacity = 5
Output: 14
Explanation: Start at the river with a full watering can:
- Walk to plant 0 (1 step) and water it. Watering can has 3 units of water.
- Walk to plant 1 (1 step) and water it. Watering can has 1 unit of water.
- Since you cannot completely water plant 2, walk back to the river to refill (2 steps).
- Walk to plant 2 (3 steps) and water it. Watering can has 2 units of water.
- Since you cannot completely water plant 3, walk back to the river to refill (3 steps).
- Walk to plant 3 (4 steps) and water it.
Steps needed = 1 + 1 + 2 + 3 + 3 + 4 = 14.

Example 2:

Input: plants = [1,1,1,4,2,3], capacity = 4
Output: 30
Explanation: Start at the river with a full watering can:
- Water plants 0, 1, and 2 (3 steps). Return to river (3 steps).
- Water plant 3 (4 steps). Return to river (4 steps).
- Water plant 4 (5 steps). Return to river (5 steps).
- Water plant 5 (6 steps).
Steps needed = 3 + 3 + 4 + 4 + 5 + 5 + 6 = 30.

Example 3:

Input: plants = [7,7,7,7,7,7,7], capacity = 8
Output: 49
Explanation: You have to refill before watering each plant.
Steps needed = 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 6 + 7 = 49.

Constraints:

  • n == plants.length
  • 1 <= n <= 1000
  • 1 <= plants[i] <= 106
  • max(plants[i]) <= capacity <= 109

Solution: Simulation

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2078. Two Furthest Houses With Different Colors

There are n houses evenly lined up on the street, and each house is beautifully painted. You are given a 0-indexed integer array colors of length n, where colors[i] represents the color of the ith house.

Return the maximum distance between two houses with different colors.

The distance between the ith and jth houses is abs(i - j), where abs(x) is the absolute value of x.

Example 1:

Input: colors = [1,1,1,6,1,1,1]
Output: 3
Explanation: In the above image, color 1 is blue, and color 6 is red.
The furthest two houses with different colors are house 0 and house 3.
House 0 has color 1, and house 3 has color 6. The distance between them is abs(0 - 3) = 3.
Note that houses 3 and 6 can also produce the optimal answer.

Example 2:

Input: colors = [1,8,3,8,3]
Output: 4
Explanation: In the above image, color 1 is blue, color 8 is yellow, and color 3 is green.
The furthest two houses with different colors are house 0 and house 4.
House 0 has color 1, and house 4 has color 3. The distance between them is abs(0 - 4) = 4.

Example 3:

Input: colors = [0,1]
Output: 1
Explanation: The furthest two houses with different colors are house 0 and house 1.
House 0 has color 0, and house 1 has color 1. The distance between them is abs(0 - 1) = 1.

Constraints:

  • n == colors.length
  • 2 <= n <= 100
  • 0 <= colors[i] <= 100
  • Test data are generated such that at least two houses have different colors.

Solution 1: Brute Force

Try all pairs.
Time complexity: O(n2)
Space complexity: O(1)

C++

Solution 2: Greedy / One pass

First house or last house must be involved in the ans.

Scan the house and check with first and last house.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2003. Smallest Missing Genetic Value in Each Subtree

There is a family tree rooted at 0 consisting of n nodes numbered 0 to n - 1. You are given a 0-indexed integer array parents, where parents[i] is the parent for node i. Since node 0 is the rootparents[0] == -1.

There are 105 genetic values, each represented by an integer in the inclusive range [1, 105]. You are given a 0-indexed integer array nums, where nums[i] is a distinct genetic value for node i.

Return an array ans of length n where ans[i] is the smallest genetic value that is missing from the subtree rooted at node i.

The subtree rooted at a node x contains node x and all of its descendant nodes.

Example 1:

Input: parents = [-1,0,0,2], nums = [1,2,3,4]
Output: [5,1,1,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value.
- 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value.
- 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value.
- 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.

Example 2:

Input: parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]
Output: [7,1,1,4,2,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value.
- 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value.
- 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value.
- 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value.
- 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value.
- 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.

Example 3:

Input: parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]
Output: [1,1,1,1,1,1,1]
Explanation: The value 1 is missing from all the subtrees.

Constraints:

  • n == parents.length == nums.length
  • 2 <= n <= 105
  • 0 <= parents[i] <= n - 1 for i != 0
  • parents[0] == -1
  • parents represents a valid tree.
  • 1 <= nums[i] <= 105
  • Each nums[i] is distinct.

Solution: DFS on a single path

One ancestors of node with value of 1 will have missing values greater than 1. We do a dfs on the path that from node with value 1 to the root.

Time complexity: O(n + max(nums))
Space complexity: O(n + max(nums))

C++