Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1865. Finding Pairs With a Certain Sum

You are given two integer arrays nums1 and nums2. You are tasked to implement a data structure that supports queries of two types:

  1. Add a positive integer to an element of a given index in the array nums2.
  2. Count the number of pairs (i, j) such that nums1[i] + nums2[j] equals a given value (0 <= i < nums1.length and 0 <= j < nums2.length).

Implement the FindSumPairs class:

  • FindSumPairs(int[] nums1, int[] nums2) Initializes the FindSumPairs object with two integer arrays nums1 and nums2.
  • void add(int index, int val) Adds val to nums2[index], i.e., apply nums2[index] += val.
  • int count(int tot) Returns the number of pairs (i, j) such that nums1[i] + nums2[j] == tot.

Example 1:

Input
["FindSumPairs", "count", "add", "count", "count", "add", "add", "count"]
[[[1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]], [7], [3, 2], [8], [4], [0, 1], [1, 1], [7]]
Output
[null, 8, null, 2, 1, null, null, 11]
Explanation
FindSumPairs findSumPairs = new FindSumPairs([1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]);
findSumPairs.count(7); // return 8; pairs (2,2), (3,2), (4,2), (2,4), (3,4), (4,4) make 2 + 5 and pairs (5,1), (5,5) make 3 + 4
findSumPairs.add(3, 2); // now nums2 = [1,4,5,4,5,4] 
findSumPairs.count(8); // return 2; pairs (5,2), (5,4) make 3 + 5 
findSumPairs.count(4); // return 1; pair (5,0) makes 3 + 1 
findSumPairs.add(0, 1); // now nums2 = [2,4,5,4,5,4] 
findSumPairs.add(1, 1); // now nums2 = [2,5,5,4,5,4] 
findSumPairs.count(7); // return 11; pairs (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,4) make 2 + 5 and pairs (5,3), (5,5) make 3 + 4

Constraints:

  • 1 <= nums1.length <= 1000
  • 1 <= nums2.length <= 105
  • 1 <= nums1[i] <= 109
  • 1 <= nums2[i] <= 105
  • 0 <= index < nums2.length
  • 1 <= val <= 105
  • 1 <= tot <= 109
  • At most 1000 calls are made to add and count each.

Solution: HashTable

Note nums1 and nums2 are unbalanced. Brute force method will take O(m*n) = O(103*105) = O(108) for each count call which will TLE. We could use a hashtable to store the counts of elements from nums2, and only iterate over nums1 to reduce the time complexity.

Time complexity:

init: O(m) + O(n)
add: O(1)
count: O(m)

Total time is less than O(106)

Space complexity: O(m + n)

C++

Python3

花花酱 LeetCode 1864. Minimum Number of Swaps to Make the Binary String Alternating

Given a binary string s, return the minimum number of character swaps to make it alternating, or -1 if it is impossible.

The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not.

Any two characters may be swapped, even if they are not adjacent.

Example 1:

Input: s = "111000"
Output: 1
Explanation: Swap positions 1 and 4: "111000" -> "101010"
The string is now alternating.

Example 2:

Input: s = "010"
Output: 0
Explanation: The string is already alternating, no swaps are needed.

Example 3:

Input: s = "1110"
Output: -1

Constraints:

  • 1 <= s.length <= 1000
  • s[i] is either '0' or '1'.

Solution: Greedy

Two passes, make the string starts with ‘0’ or ‘1’, count how many 0/1 swaps needed. 0/1 swaps must equal otherwise it’s impossible to swap.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1863. Sum of All Subset XOR Totals

The XOR total of an array is defined as the bitwise XOR of all its elements, or 0 if the array is empty.

  • For example, the XOR total of the array [2,5,6] is 2 XOR 5 XOR 6 = 1.

Given an array nums, return the sum of all XOR totals for every subset of nums

Note: Subsets with the same elements should be counted multiple times.

An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b.

Example 1:

Input: nums = [1,3]
Output: 6
Explanation: The 4 subsets of [1,3] are:
- The empty subset has an XOR total of 0.
- [1] has an XOR total of 1.
- [3] has an XOR total of 3.
- [1,3] has an XOR total of 1 XOR 3 = 2.
0 + 1 + 3 + 2 = 6

Example 2:

Input: nums = [5,1,6]
Output: 28
Explanation: The 8 subsets of [5,1,6] are:
- The empty subset has an XOR total of 0.
- [5] has an XOR total of 5.
- [1] has an XOR total of 1.
- [6] has an XOR total of 6.
- [5,1] has an XOR total of 5 XOR 1 = 4.
- [5,6] has an XOR total of 5 XOR 6 = 3.
- [1,6] has an XOR total of 1 XOR 6 = 7.
- [5,1,6] has an XOR total of 5 XOR 1 XOR 6 = 2.
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

Example 3:

Input: nums = [3,4,5,6,7,8]
Output: 480
Explanation: The sum of all XOR totals for every subset is 480.

Constraints:

  • 1 <= nums.length <= 12
  • 1 <= nums[i] <= 20

Solution 1: Brute Force

Use an array A to store all the xor subsets, for a given number x
A = A + [x ^ a for a in A]

Time complexity: O(2n)
Space complexity: O(2n)

Python3

花花酱 LeetCode 1860. Incremental Memory Leak

You are given two integers memory1 and memory2 representing the available memory in bits on two memory sticks. There is currently a faulty program running that consumes an increasing amount of memory every second.

At the ith second (starting from 1), i bits of memory are allocated to the stick with more available memory (or from the first memory stick if both have the same available memory). If neither stick has at least i bits of available memory, the program crashes.

Return an array containing [crashTime, memory1crash, memory2crash], where crashTime is the time (in seconds) when the program crashed and memory1crash and memory2crash are the available bits of memory in the first and second sticks respectively.

Example 1:

Input: memory1 = 2, memory2 = 2
Output: [3,1,0]
Explanation: The memory is allocated as follows:
- At the 1st second, 1 bit of memory is allocated to stick 1. The first stick now has 1 bit of available memory.
- At the 2nd second, 2 bits of memory are allocated to stick 2. The second stick now has 0 bits of available memory.
- At the 3rd second, the program crashes. The sticks have 1 and 0 bits available respectively.

Example 2:

Input: memory1 = 8, memory2 = 11
Output: [6,0,4]
Explanation: The memory is allocated as follows:
- At the 1st second, 1 bit of memory is allocated to stick 2. The second stick now has 10 bit of available memory.
- At the 2nd second, 2 bits of memory are allocated to stick 2. The second stick now has 8 bits of available memory.
- At the 3rd second, 3 bits of memory are allocated to stick 1. The first stick now has 5 bits of available memory.
- At the 4th second, 4 bits of memory are allocated to stick 2. The second stick now has 4 bits of available memory.
- At the 5th second, 5 bits of memory are allocated to stick 1. The first stick now has 0 bits of available memory.
- At the 6th second, the program crashes. The sticks have 0 and 4 bits available respectively.

Constraints:

  • 0 <= memory1, memory2 <= 231 - 1

Solution: Simulation

Time complexity: O(max(memory1, memory2)0.5)
Space complexity: O(1)

Python3

花花酱 LeetCode 1859. Sorting the Sentence

sentence is a list of words that are separated by a single space with no leading or trailing spaces. Each word consists of lowercase and uppercase English letters.

A sentence can be shuffled by appending the 1-indexed word position to each word then rearranging the words in the sentence.

  • For example, the sentence "This is a sentence" can be shuffled as "sentence4 a3 is2 This1" or "is2 sentence4 This1 a3".

Given a shuffled sentence s containing no more than 9 words, reconstruct and return the original sentence.

Example 1:

Input: s = "is2 sentence4 This1 a3"
Output: "This is a sentence"
Explanation: Sort the words in s to their original positions "This1 is2 a3 sentence4", then remove the numbers.

Example 2:

Input: s = "Myself2 Me1 I4 and3"
Output: "Me Myself and I"
Explanation: Sort the words in s to their original positions "Me1 Myself2 and3 I4", then remove the numbers.

Constraints:

  • 2 <= s.length <= 200
  • s consists of lowercase and uppercase English letters, spaces, and digits from 1 to 9.
  • The number of words in s is between 1 and 9.
  • The words in s are separated by a single space.
  • s contains no leading or trailing spaces.

Solution: String

Time complexity: O(n)
Space complexity: O(n)

Python3