Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1808. Maximize Number of Nice Divisors

You are given a positive integer primeFactors. You are asked to construct a positive integer n that satisfies the following conditions:

  • The number of prime factors of n (not necessarily distinct) is at most primeFactors.
  • The number of nice divisors of n is maximized. Note that a divisor of n is nice if it is divisible by every prime factor of n. For example, if n = 12, then its prime factors are [2,2,3], then 6 and 12 are nice divisors, while 3 and 4 are not.

Return the number of nice divisors of n. Since that number can be too large, return it modulo 109 + 7.

Note that a prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. The prime factors of a number n is a list of prime numbers such that their product equals n.

Example 1:

Input: primeFactors = 5
Output: 6
Explanation: 200 is a valid value of n.
It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200].
There is not other value of n that has at most 5 prime factors and more nice divisors.

Example 2:

Input: primeFactors = 8
Output: 18

Constraints:

  • 1 <= primeFactors <= 109

Solution: Math

Time complexity: O(logn)
Space complexity: O(1)

C++

花花酱 LeetCode 1807. Evaluate the Bracket Pairs of a String

You are given a string s that contains some bracket pairs, with each pair containing a non-empty key.

  • For example, in the string "(name)is(age)yearsold", there are two bracket pairs that contain the keys "name" and "age".

You know the values of a wide range of keys. This is represented by a 2D string array knowledge where each knowledge[i] = [keyi, valuei] indicates that key keyi has a value of valuei.

You are tasked to evaluate all of the bracket pairs. When you evaluate a bracket pair that contains some key keyi, you will:

  • Replace keyi and the bracket pair with the key’s corresponding valuei.
  • If you do not know the value of the key, you will replace keyi and the bracket pair with a question mark "?" (without the quotation marks).

Each key will appear at most once in your knowledge. There will not be any nested brackets in s.

Return the resulting string after evaluating all of the bracket pairs.

Example 1:

Input: s = "(name)is(age)yearsold", knowledge = [["name","bob"],["age","two"]]
Output: "bobistwoyearsold"
Explanation:
The key "name" has a value of "bob", so replace "(name)" with "bob".
The key "age" has a value of "two", so replace "(age)" with "two".

Example 2:

Input: s = "hi(name)", knowledge = [["a","b"]]
Output: "hi?"
Explanation: As you do not know the value of the key "name", replace "(name)" with "?".

Example 3:

Input: s = "(a)(a)(a)aaa", knowledge = [["a","yes"]]
Output: "yesyesyesaaa"
Explanation: The same key can appear multiple times.
The key "a" has a value of "yes", so replace all occurrences of "(a)" with "yes".
Notice that the "a"s not in a bracket pair are not evaluated.

Example 4:

Input: s = "(a)(b)", knowledge = [["a","b"],["b","a"]]
Output: "ba"

Constraints:

  • 1 <= s.length <= 105
  • 0 <= knowledge.length <= 105
  • knowledge[i].length == 2
  • 1 <= keyi.length, valuei.length <= 10
  • s consists of lowercase English letters and round brackets '(' and ')'.
  • Every open bracket '(' in s will have a corresponding close bracket ')'.
  • The key in each bracket pair of s will be non-empty.
  • There will not be any nested bracket pairs in s.
  • keyi and valuei consist of lowercase English letters.
  • Each keyi in knowledge is unique.

Solution: Hashtable + Simulation

Time complexity: O(n+k)
Space complexity: O(n+k)

C++

花花酱 LeetCode 1806. Minimum Number of Operations to Reinitialize a Permutation

You are given an even integer n​​​​​​. You initially have a permutation perm of size n​​ where perm[i] == i​ (0-indexed)​​​​.

In one operation, you will create a new array arr, and for each i:

  • If i % 2 == 0, then arr[i] = perm[i / 2].
  • If i % 2 == 1, then arr[i] = perm[n / 2 + (i - 1) / 2].

You will then assign arr​​​​ to perm.

Return the minimum non-zero number of operations you need to perform on perm to return the permutation to its initial value.

Example 1:

Input: n = 2
Output: 1
Explanation: prem = [0,1] initially.
After the 1st operation, prem = [0,1]
So it takes only 1 operation.

Example 2:

Input: n = 4
Output: 2
Explanation: prem = [0,1,2,3] initially.
After the 1st operation, prem = [0,2,1,3]
After the 2nd operation, prem = [0,1,2,3]
So it takes only 2 operations.

Example 3:

Input: n = 6
Output: 4

Constraints:

  • 2 <= n <= 1000
  • n​​​​​​ is even.

Solution: Brute Force / Simulation

Time complexity: O(n2) ?
Space complexity: O(n)

C++

花花酱 LeetCode 1805. Number of Different Integers in a String

You are given a string word that consists of digits and lowercase English letters.

You will replace every non-digit character with a space. For example, "a123bc34d8ef34" will become " 123  34 8  34". Notice that you are left with some integers that are separated by at least one space: "123""34""8", and "34".

Return the number of different integers after performing the replacement operations on word.

Two integers are considered different if their decimal representations without any leading zeros are different.

Example 1:

Input: word = "a123bc34d8ef34"
Output: 3
Explanation: The three different integers are "123", "34", and "8". Notice that "34" is only counted once.

Example 2:

Input: word = "leet1234code234"
Output: 2

Example 3:

Input: word = "a1b01c001"
Output: 1
Explanation: The three integers "1", "01", and "001" all represent the same integer because
the leading zeros are ignored when comparing their decimal values.

Constraints:

  • 1 <= word.length <= 1000
  • word consists of digits and lowercase English letters.

Solution: Hashtable

Be careful about leading zeros.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1802. Maximum Value at a Given Index in a Bounded Array

You are given three positive integers nindex and maxSum. You want to construct an array nums (0-indexed) that satisfies the following conditions:

  • nums.length == n
  • nums[i] is a positive integer where 0 <= i < n.
  • abs(nums[i] - nums[i+1]) <= 1 where 0 <= i < n-1.
  • The sum of all the elements of nums does not exceed maxSum.
  • nums[index] is maximized.

Return nums[index] of the constructed array.

Note that abs(x) equals x if x >= 0, and -x otherwise.

Example 1:

Input: n = 4, index = 2,  maxSum = 6
Output: 2
Explanation: The arrays [1,1,2,1] and [1,2,2,1] satisfy all the conditions. There are no other valid arrays with a larger value at the given index.

Example 2:

Input: n = 6, index = 1,  maxSum = 10
Output: 3

Constraints:

  • 1 <= n <= maxSum <= 109
  • 0 <= index < n

Solution: Binary Search

To maximize nums[index], we can construct an array like this:
[1, 1, 1, …, 1, 2, 3, …, k – 1, k, k – 1, …,3, 2, 1, …., 1, 1, 1]

Time complexity: O(logn)
Space complexity: O(1)

C++