A sentence is a list of words that are separated by a single space with no leading or trailing spaces. Each of the words consists of only uppercase and lowercase English letters (no punctuation).
For example, "Hello World", "HELLO", and "hello world hello world" are all sentences.
You are given a sentence s and an integer k. You want to truncates such that it contains only the firstk words. Return s after truncating it.
Example 1:
Input: s = "Hello how are you Contestant", k = 4
Output: "Hello how are you"
Explanation:
The words in s are ["Hello", "how" "are", "you", "Contestant"].
The first 4 words are ["Hello", "how", "are", "you"].
Hence, you should return "Hello how are you".
Example 2:
Input: s = "What is the solution to this problem", k = 4
Output: "What is the solution"
Explanation:
The words in s are ["What", "is" "the", "solution", "to", "this", "problem"].
The first 4 words are ["What", "is", "the", "solution"].
Hence, you should return "What is the solution".
Example 3:
Input: s = "chopper is not a tanuki", k = 5
Output: "chopper is not a tanuki"
Constraints:
1 <= s.length <= 500
k is in the range [1, the number of words in s].
s consist of only lowercase and uppercase English letters and spaces.
There is a donuts shop that bakes donuts in batches of batchSize. They have a rule where they must serve all of the donuts of a batch before serving any donuts of the next batch. You are given an integer batchSize and an integer array groups, where groups[i] denotes that there is a group of groups[i] customers that will visit the shop. Each customer will get exactly one donut.
When a group visits the shop, all customers of the group must be served before serving any of the following groups. A group will be happy if they all get fresh donuts. That is, the first customer of the group does not receive a donut that was left over from the previous group.
You can freely rearrange the ordering of the groups. Return the maximum possible number of happy groups after rearranging the groups.
Example 1:
Input: batchSize = 3, groups = [1,2,3,4,5,6]
Output: 4
Explanation: You can arrange the groups as [6,2,4,5,1,3]. Then the 1st, 2nd, 4th, and 6th groups will be happy.
Example 2:
Input: batchSize = 4, groups = [1,3,2,5,2,2,1,6]
Output: 4
Constraints:
1 <= batchSize <= 9
1 <= groups.length <= 30
1 <= groups[i] <= 109
Solution 0: Binary Mask DP
Time complexity: O(n*2n) TLE Space complexity: O(2n)
You are given an array nums that consists of non-negative integers. Let us define rev(x) as the reverse of the non-negative integer x. For example, rev(123) = 321, and rev(120) = 21. A pair of indices (i, j) is nice if it satisfies all of the following conditions:
0 <= i < j < nums.length
nums[i] + rev(nums[j]) == nums[j] + rev(nums[i])
Return the number of nice pairs of indices. Since that number can be too large, return it modulo109 + 7.
A sentence is a list of words that are separated by a single space with no leading or trailing spaces. For example, "Hello World", "HELLO", "hello world hello world" are all sentences. Words consist of only uppercase and lowercase English letters.
Two sentences sentence1 and sentence2 are similar if it is possible to insert an arbitrary sentence (possibly empty) inside one of these sentences such that the two sentences become equal. For example, sentence1 = "Hello my name is Jane" and sentence2 = "Hello Jane" can be made equal by inserting "my name is" between "Hello" and "Jane" in sentence2.
Given two sentences sentence1 and sentence2, return trueif sentence1and sentence2are similar. Otherwise, return false.
Example 1:
Input: sentence1 = "My name is Haley", sentence2 = "My Haley"
Output: true
Explanation: sentence2 can be turned to sentence1 by inserting "name is" between "My" and "Haley".
Example 2:
Input: sentence1 = "of", sentence2 = "A lot of words"
Output: false
Explanation: No single sentence can be inserted inside one of the sentences to make it equal to the other.
Example 3:
Input: sentence1 = "Eating right now", sentence2 = "Eating"
Output: true
Explanation: sentence2 can be turned to sentence1 by inserting "right now" at the end of the sentence.