Press "Enter" to skip to content

Posts tagged as “medium”

花花酱 LeetCode 1219. Path with Maximum Gold

In a gold mine grid of size m * n, each cell in this mine has an integer representing the amount of gold in that cell, 0 if it is empty.

Return the maximum amount of gold you can collect under the conditions:

  • Every time you are located in a cell you will collect all the gold in that cell.
  • From your position you can walk one step to the left, right, up or down.
  • You can’t visit the same cell more than once.
  • Never visit a cell with 0 gold.
  • You can start and stop collecting gold from any position in the grid that has some gold.

Example 1:

Input: grid = [[0,6,0],[5,8,7],[0,9,0]]
Output: 24
Explanation:
[[0,6,0],
 [5,8,7],
 [0,9,0]]
Path to get the maximum gold, 9 -> 8 -> 7.

Example 2:

Input: grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
Output: 28
Explanation:
[[1,0,7],
 [2,0,6],
 [3,4,5],
 [0,3,0],
 [9,0,20]]
Path to get the maximum gold, 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7.

Constraints:

  • 1 <= grid.length, grid[i].length <= 15
  • 0 <= grid[i][j] <= 100
  • There are at most 25 cells containing gold.

Solution: DFS

Time compleixty: O(4^25) ???
Space complexity: O(25)

C++

花花酱 LeetCode 46. Permutations

Given a collection of distinct integers, return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

Solution: DFS

Time complexity: O(n!)
Space complexity: O(n)

C++

Related Problems

花花酱 LeetCode 48. Rotate Image

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Note:

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

Given input matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

rotate the input matrix in-place such that it becomes:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

Example 2:

Given input matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

rotate the input matrix in-place such that it becomes:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

Solution: 2 Passes

First pass: mirror around diagonal
Second pass: mirror around y axis

Time complexity: O(n^2)
Space complexity: O(1)

C++

花花酱 LeetCode 49. Group Anagrams

Given an array of strings, group anagrams together.

Example:

Input: ["eat", "tea", "tan", "ate", "nat", "bat"],
Output:
[
  ["ate","eat","tea"],
  ["nat","tan"],
  ["bat"]
]

Note:

  • All inputs will be in lowercase.
  • The order of your output does not matter.

Solution: HashTable

The sorted word will be the key of each group

Time complexity: O(sum(l*log(l)))
Space complexity: O(sum(l))

C++

花花酱 LeetCode 71. Simplify Path

Given an absolute path for a file (Unix-style), simplify it. Or in other words, convert it to the canonical path.

In a UNIX-style file system, a period . refers to the current directory. Furthermore, a double period .. moves the directory up a level. For more information, see: Absolute path vs relative path in Linux/Unix

Note that the returned canonical path must always begin with a slash /, and there must be only a single slash / between two directory names. The last directory name (if it exists) must not end with a trailing /. Also, the canonical path must be the shortest string representing the absolute path.

Example 1:

Input: "/home/"
Output: "/home"
Explanation: Note that there is no trailing slash after the last directory name.

Example 2:

Input: "/../"
Output: "/"
Explanation: Going one level up from the root directory is a no-op, as the root level is the highest level you can go.

Example 3:

Input: "/home//foo/"
Output: "/home/foo"
Explanation: In the canonical path, multiple consecutive slashes are replaced by a single one.

Example 4:

Input: "/a/./b/../../c/"
Output: "/c"

Example 5:

Input: "/a/../../b/../c//.//"
Output: "/c"

Example 6:

Input: "/a//b////c/d//././/.."
Output: "/a/b/c"

Solution: Stack

Time complexity: O(n)
Space complexity: O(n)

C++