The product difference between two pairs (a, b) and (c, d) is defined as (a * b) - (c * d).
For example, the product difference between (5, 6) and (2, 7) is (5 * 6) - (2 * 7) = 16.
Given an integer array nums, choose four distinct indices w, x, y, and z such that the product difference between pairs (nums[w], nums[x]) and (nums[y], nums[z]) is maximized.
Return the maximum such product difference.
Example 1:
Input: nums = [5,6,2,7,4]
Output: 34
Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4).
The product difference is (6 * 7) - (2 * 4) = 34.
Example 2:
Input: nums = [4,2,5,9,7,4,8]
Output: 64
Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4).
The product difference is (9 * 8) - (2 * 4) = 64.
Constraints:
4 <= nums.length <= 104
1 <= nums[i] <= 104
Solution: Greedy
Since all the numbers are positive, we just need to find the largest two numbers as the first pair and smallest two numbers are the second pair.
Time complexity: O(nlogn) / sorting, O(n) / finding min/max elements. Space complexity: O(1)
The pair sum of a pair (a,b) is equal to a + b. The maximum pair sum is the largest pair sum in a list of pairs.
For example, if we have pairs (1,5), (2,3), and (4,4), the maximum pair sum would be max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8.
Given an array nums of even length n, pair up the elements of nums into n / 2 pairs such that:
Each element of nums is in exactly one pair, and
The maximum pair sum is minimized.
Return the minimized maximum pair sum after optimally pairing up the elements.
Example 1:
Input: nums = [3,5,2,3]
Output: 7
Explanation: The elements can be paired up into pairs (3,3) and (5,2).
The maximum pair sum is max(3+3, 5+2) = max(6, 7) = 7.
Example 2:
Input: nums = [3,5,4,2,4,6]
Output: 8
Explanation: The elements can be paired up into pairs (3,5), (4,4), and (6,2).
The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.
Constraints:
n == nums.length
2 <= n <= 105
n is even.
1 <= nums[i] <= 105
Solution: Greedy
Sort the elements, pair nums[i] with nums[n – i – 1] and find the max pair.
Time complexity: O(nlogn) -> O(n) counting sort. Space complexity: O(1)
Create a timebased key-value store class TimeMap, that supports two operations.
1. set(string key, string value, int timestamp)
Stores the key and value, along with the given timestamp.
2. get(string key, int timestamp)
Returns a value such that set(key, value, timestamp_prev) was called previously, with timestamp_prev <= timestamp.
If there are multiple such values, it returns the one with the largest timestamp_prev.
If there are no values, it returns the empty string ("").
Example 1:
Input: inputs = ["TimeMap","set","get","get","set","get","get"], inputs = [[],["foo","bar",1],["foo",1],["foo",3],["foo","bar2",4],["foo",4],["foo",5]]
Output: [null,null,"bar","bar",null,"bar2","bar2"]
Explanation:
TimeMap kv;
kv.set("foo", "bar", 1); // store the key "foo" and value "bar" along with timestamp = 1
kv.get("foo", 1); // output "bar"
kv.get("foo", 3); // output "bar" since there is no value corresponding to foo at timestamp 3 and timestamp 2, then the only value is at timestamp 1 ie "bar"
kv.set("foo", "bar2", 4);
kv.get("foo", 4); // output "bar2"
kv.get("foo", 5); //output "bar2"
You are installing a billboard and want it to have the largest height. The billboard will have two steel supports, one on each side. Each steel support must be an equal height.
You have a collection of rods which can be welded together. For example, if you have rods of lengths 1, 2, and 3, you can weld them together to make a support of length 6.
Return the largest possible height of your billboard installation. If you cannot support the billboard, return 0.
Example 1:
Input: [1,2,3,6]Output: 6Explanation: We have two disjoint subsets {1,2,3} and {6}, which have the same sum = 6.
Example 2:
Input: [1,2,3,4,5,6]Output: 10Explanation: We have two disjoint subsets {2,3,5} and {4,6}, which have the same sum = 10.
Example 3:
Input: [1,2]Output: 0Explanation: The billboard cannot be supported, so we return 0.