# Problem

Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarray of A.

Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:

Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.  Sum is 17.

Note:

1. 1 <= A.length <= 30000
2. 1 <= A[i] <= 30000

# Idea

1. order matters, unlike 花花酱 LeetCode 898. Bitwise ORs of Subarrays we can not sort the numbers in this problem.
1. e.g. sumSubarrayMins([3, 1, 2, 4]) !=sumSubarrayMins([1, 2, 3, 4]) since the first one will not have a subarray of [3,4].
2. For A[i], assuming there are L numbers that are greater than A[i] in range A[0] ~ A[i – 1], and there are R numbers that are greater or equal than A[i] in the range of A[i+1] ~ A[n – 1]. Thus A[i] will be the min of (L + 1) * (R + 1) subsequences.
1. e.g. A = [3,1,2,4], A[1] = 1, L = 1, R = 2, there are (1 + 1) * (2 + 1) = 6 subsequences are 1 is the min number. [3,1], [3,1,2], [3,1,2,4], [1], [1,2], [1,2,4]

# Solution 1: Brute Force

Time complexity: O(n^2)

Space complexity: O(1)

# Solution2 : Monotonic Stack

Time complexity: O(n)

Space complexity: O(n)

We can use a monotonic stack to compute left[i] and right[i] similar to 花花酱 LeetCode 901. Online Stock Span

# Problem

https://leetcode.com/problems/maximum-average-subarray-i/description/

Given an array consisting of n integers, find the contiguous subarray of given length k that has the maximum average value. And you need to output the maximum average value.

Example 1:

Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation: Maximum average is (12-5-6+50)/4 = 51/4 = 12.75


Note:

1. 1 <= k <= n <= 30,000.
2. Elements of the given array will be in the range [-10,000, 10,000].

# Solution: Sliding Window

Time complexity: O(n)

Space complexity: O(1)

C++

# Problem

Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.

Example 1:

Input: [23, 2, 4, 6, 7],  k=6
Output: True
Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.


Example 2:

Input: [23, 2, 6, 4, 7],  k=6
Output: True
Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.


Note:

1. The length of the array won’t exceed 10,000.
2. You may assume the sum of all the numbers is in the range of a signed 32-bit integer.

# Special case:

nums = [0,0], k = 0, return = True

# Solution: Prefix Sum Reminder

Time complexity: O(n)

Space complexity: O(min(n, k))

# Problem

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

• 1 ≤ n ≤ 1000
• 1 ≤ m ≤ min(50, n)

Examples:

Input:
nums = [7,2,5,10,8]
m = 2

Output:
18

Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.


# Solution: DP

Time complexity: O(n^2*m)

Space complexity: O(n*m)

C++ / Recursion + Memorization

C++ / DP

# Solution: Binary Search

Time complexity: O(log(sum(nums))*n)

Space complexity: O(1)

# Problem

https://leetcode.com/problems/longest-mountain-in-array/description/

Let’s call any (contiguous) subarray B (of A) a mountain if the following properties hold:

• B.length >= 3
• There exists some 0 < i < B.length - 1 such that B[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1]

(Note that B could be any subarray of A, including the entire array A.)

Given an array A of integers, return the length of the longest mountain.

Return 0 if there is no mountain.

Example 1:

Input: [2,1,4,7,3,2,5]
Output: 5
Explanation: The largest mountain is [1,4,7,3,2] which has length 5.


Example 2:

Input: [2,2,2]
Output: 0
Explanation: There is no mountain.


Note:

1. 0 <= A.length <= 10000
2. 0 <= A[i] <= 10000

# Solution: DP

Three passes

Time complexity: O(n)

Space complexity: O(n)

C++

One pass

Time complexity: O(n)

Space complexity: O(1)

Mission News Theme by Compete Themes.