Implement the class ProductOfNumbers that supports two methods:

1. add(int num)

• Adds the number num to the back of the current list of numbers.

2. getProduct(int k)

• Returns the product of the last k numbers in the current list.
• You can assume that always the current list has at least k numbers.

At any time, the product of any contiguous sequence of numbers will fit into a single 32-bit integer without overflowing.

Example:

Input
[[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]]

Output: [null,null,null,null,null,null,20,40,0,null,32]
Explanation:
ProductOfNumbers productOfNumbers = new ProductOfNumbers();
productOfNumbers.getProduct(2); // return 20.
The product of the last 2 numbers is 5 * 4 = 20
productOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40
productOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0
productOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32


Constraints:

• There will be at most 40000 operations considering both add and getProduct.
• 0 <= num <= 100
• 1 <= k <= 40000

Solution: Prefix product

Use p[i] to store the prod of a1*a2*…ai
p[i] = ai*p[i-1]
If ai is 0, reset p = [1].
Compare k with the len(p), if k is greater than len(p) which means there is 0 recently, return 0.
otherwise return p[n] / p[n – k – 1]

Time complexity: Add: O(1), getProduct: O(1)
Space complexity: O(n)

C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode