Given an array nums and an integer target.

Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.

Example 1:

Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).


Example 2:

Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.

Example 3:

Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10
Output: 3


Example 4:

Input: nums = [0,0,0], target = 0
Output: 3


Constraints:

• 1 <= nums.length <= 10^5
• -10^4 <= nums[i] <= 10^4
• 0 <= target <= 10^6

## Solution: Prefix Sum + DP

Use a hashmap index to record the last index when a given prefix sum occurs.
dp[i] := max # of non-overlapping subarrays of nums[0~i], nums[i] is not required to be included.
dp[i+1] = max(dp[i], // skip nums[i]
dp[index[sum – target] + 1] + 1) // use nums[i] to form a new subarray
ans = dp[n]

Time complexity: O(n)
Space complexity: O(n)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 