# Problem

Given a string S, count the number of distinct, non-empty subsequences of S .

Since the result may be large, return the answer modulo 10^9 + 7.

Example 1:

Input: "abc"
Output: 7
Explanation: The 7 distinct subsequences are "a", "b", "c", "ab", "ac", "bc", and "abc".


Example 2:

Input: "aba"
Output: 6
Explanation: The 6 distinct subsequences are "a", "b", "ab", "ba", "aa" and "aba".


Example 3:

Input: "aaa"
Output: 3
Explanation: The 3 distinct subsequences are "a", "aa" and "aaa".

Note:

1. S contains only lowercase letters.
2. 1 <= S.length <= 2000

# Solution: DP

counts[i][j] := # of distinct sub sequences of s[1->i] and ends with letter j. (‘a'<= j <= ‘z’)

Initialization:

counts[*][*] = 0

Transition:

counts[i][j] = sum(counts[i-1]) + 1 if s[i] == j  else counts[i-1][j]

ans = sum(counts[n])

e.g. S = “abc”

counts[1] = {‘a’ : 1}
counts[2] = {‘a’ : 1, ‘b’ : 1 + 1 = 2}
counts[3] = {‘a’ : 1, ‘b’ : 2, ‘c’: 1 + 2 + 1 = 4}
ans = sum(counts[3]) = 1 + 2 + 4 = 7

Time complexity: O(N*26)

Space complexity: O(N*26) -> O(26)

## Python3

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode

## Be First to Comment

Mission News Theme by Compete Themes.