There is an undirected weighted connected graph. You are given a positive integer n which denotes that the graph has n nodes labeled from 1 to n, and an array edges where each edges[i] = [ui, vi, weighti] denotes that there is an edge between nodes ui and vi with weight equal to weighti.

A path from node start to node end is a sequence of nodes [z0, z1,z2, ..., zk] such that z0 = start and zk = end and there is an edge between zi and zi+1 where 0 <= i <= k-1.

The distance of a path is the sum of the weights on the edges of the path. Let distanceToLastNode(x) denote the shortest distance of a path between node n and node x. A restricted path is a path that also satisfies that distanceToLastNode(zi) > distanceToLastNode(zi+1) where 0 <= i <= k-1.

Return the number of restricted paths from node 1 to node n. Since that number may be too large, return it modulo 109 + 7.

Example 1:

Input: n = 5, edges = [[1,2,3],[1,3,3],[2,3,1],[1,4,2],[5,2,2],[3,5,1],[5,4,10]]
Output: 3
Explanation: Each circle contains the node number in black and its distanceToLastNode value in blue. The three restricted paths are:
1) 1 --> 2 --> 5
2) 1 --> 2 --> 3 --> 5
3) 1 --> 3 --> 5


Example 2:

Input: n = 7, edges = [[1,3,1],[4,1,2],[7,3,4],[2,5,3],[5,6,1],[6,7,2],[7,5,3],[2,6,4]]
Output: 1
Explanation: Each circle contains the node number in black and its distanceToLastNode value in blue. The only restricted path is 1 --> 3 --> 7.


Constraints:

• 1 <= n <= 2 * 104
• n - 1 <= edges.length <= 4 * 104
• edges[i].length == 3
• 1 <= ui, vi <= n
• ui != vi
• 1 <= weighti <= 105
• There is at most one edge between any two nodes.
• There is at least one path between any two nodes.

## Solution: Dijkstra + DFS w/ memoization

Find shortest path from n to all the nodes.
paths(u) = sum(paths(v)) if dist[u] > dist[v] and (u, v) has an edge
return paths(1)

Time complexity: O(ElogV + V + E)
Space complexity: O(V + E)

Combined

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 