Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.
Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.
Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.
Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000
Solution: DP
dp[i][j] := max product of nums1[0~i], nums2[0~j].
Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.
Return the number of pseudo-palindromic paths going from the root node to leaf nodes.
Example 1:
Input: root = [2,3,1,3,1,null,1]
Output: 2
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).
Example 2:
Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).
Example 3:
Input: root = [9]
Output: 1
Constraints:
The given binary tree will have between 1 and 10^5 nodes.
Node values are digits from 1 to 9.
Solution: Counting
At most one number can occur odd times.
Time complexity: O(n) Space complexity: O(n) / stack size
C++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// Author: Huahua
classSolution{
public:
intpseudoPalindromicPaths(TreeNode*root){
vector<int>counts(10);
function<int(TreeNode*)>dfs=[&](TreeNode*node){
if(!node)return0;
++counts[node->val];
intc=0;
if(!node->left&&!node->right){
intodds=0;
for(inti=1;i<=9;++i)
if(counts[i]&1)++odds;
if(odds<=1)c=1;
}
intl=dfs(node->left);
intr=dfs(node->right);
--counts[node->val];
returnc+l+r;
};
returndfs(root);
}
};
Use a binary string to represent occurrences of each number (even: 0 / odd: 1), we can use xor to flip the bit.
Given a sentence that consists of some words separated by a single space, and a searchWord.
You have to check if searchWord is a prefix of any word in sentence.
Return the index of the word in sentence where searchWord is a prefix of this word (1-indexed).
If searchWord is a prefix of more than one word, return the index of the first word (minimum index). If there is no such word return -1.
A prefix of a string S is any leading contiguous substring of S.
Example 1:
Input: sentence = "i love eating burger", searchWord = "burg"
Output: 4
Explanation: "burg" is prefix of "burger" which is the 4th word in the sentence.
Example 2:
Input: sentence = "this problem is an easy problem", searchWord = "pro"
Output: 2
Explanation: "pro" is prefix of "problem" which is the 2nd and the 6th word in the sentence, but we return 2 as it's the minimal index.
Example 3:
Input: sentence = "i am tired", searchWord = "you"
Output: -1
Explanation: "you" is not a prefix of any word in the sentence.
Example 4:
Input: sentence = "i use triple pillow", searchWord = "pill"
Output: 4
Example 5:
Input: sentence = "hello from the other side", searchWord = "they"
Output: -1
Constraints:
1 <= sentence.length <= 100
1 <= searchWord.length <= 10
sentence consists of lowercase English letters and spaces.