Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1368. Minimum Cost to Make at Least One Valid Path in a Grid

Given a m x ngrid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be:

  • 1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1])
  • 2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1])
  • 3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j])
  • 4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j])

Notice that there could be some invalid signs on the cells of the grid which points outside the grid.

You will initially start at the upper left cell (0,0). A valid path in the grid is a path which starts from the upper left cell (0,0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path doesn’t have to be the shortest.

You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only.

Return the minimum cost to make the grid have at least one valid path.

Example 1:

Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
Output: 3
Explanation: You will start at point (0, 0).
The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3)
The total cost = 3.

Example 2:

Input: grid = [[1,1,3],[3,2,2],[1,1,4]]
Output: 0
Explanation: You can follow the path from (0, 0) to (2, 2).

Example 3:

Input: grid = [[1,2],[4,3]]
Output: 1

Example 4:

Input: grid = [[2,2,2],[2,2,2]]
Output: 3

Example 5:

Input: grid = [[4]]
Output: 0

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100

Solution 1: Lazy BFS (fake DP)

dp[i][j] := min steps to reach (i, j)

Time complexity: O((m+n)*m*n)
Space complexity: O(m*n)

C++

C++

Solution 2: 0-1 BFS

Time complexity: O(m*n)
Space complexity: O(m*n)

C++

花花酱 LeetCode 1348. Tweet Counts Per Frequency

Implement the class TweetCounts that supports two methods:

1. recordTweet(string tweetName, int time)

  • Stores the tweetName at the recorded time (in seconds).

2. getTweetCountsPerFrequency(string freq, string tweetName, int startTime, int endTime)

  • Returns the total number of occurrences for the given tweetName per minutehour, or day (depending on freq) starting from the startTime (in seconds) and ending at the endTime (in seconds).
  • freq is always minutehour or day, representing the time interval to get the total number of occurrences for the given tweetName.
  • The first time interval always starts from the startTime, so the time intervals are [startTime, startTime + delta*1>,  [startTime + delta*1, startTime + delta*2>, [startTime + delta*2, startTime + delta*3>, ... , [startTime + delta*i, min(startTime + delta*(i+1), endTime + 1)> for some non-negative number i and delta (which depends on freq).  

Example:

Input
["TweetCounts","recordTweet","recordTweet","recordTweet","getTweetCountsPerFrequency","getTweetCountsPerFrequency","recordTweet","getTweetCountsPerFrequency"]
[[],["tweet3",0],["tweet3",60],["tweet3",10],["minute","tweet3",0,59],["minute","tweet3",0,60],["tweet3",120],["hour","tweet3",0,210]]

Output
[null,null,null,null,[2]
[2,1],null,[4]]

Explanation
TweetCounts tweetCounts = new TweetCounts();
tweetCounts.recordTweet("tweet3", 0);
tweetCounts.recordTweet("tweet3", 60);
tweetCounts.recordTweet("tweet3", 10);                             // All tweets correspond to "tweet3" with recorded times at 0, 10 and 60.
tweetCounts.getTweetCountsPerFrequency("minute", "tweet3", 0, 59); // return [2]. The frequency is per minute (60 seconds), so there is one interval of time: 1) [0, 60> - > 2 tweets.
tweetCounts.getTweetCountsPerFrequency("minute", "tweet3", 0, 60); // return [2, 1]. The frequency is per minute (60 seconds), so there are two intervals of time: 1) [0, 60> - > 2 tweets, and 2) [60,61> - > 1 tweet.
tweetCounts.recordTweet("tweet3", 120);                            // All tweets correspond to "tweet3" with recorded times at 0, 10, 60 and 120.
tweetCounts.getTweetCountsPerFrequency("hour", "tweet3", 0, 210);  // return [4]. The frequency is per hour (3600 seconds), so there is one interval of time: 1) [0, 211> - > 4 tweets.

Constraints:

  • There will be at most 10000 operations considering both recordTweet and getTweetCountsPerFrequency.
  • 0 <= time, startTime, endTime <= 10^9

Solution: Hashtable + binary search

Time complexity:
Record: O(logn)
getCount: O(logn + |entries|)

Space complexity: O(n)

C++

花花酱 LeetCode 1363. Largest Multiple of Three

Given an integer array of digits, return the largest multiple of three that can be formed by concatenating some of the given digits in any order.

Since the answer may not fit in an integer data type, return the answer as a string.

If there is no answer return an empty string.

Example 1:

Input: digits = [8,1,9]
Output: "981"

Example 2:

Input: digits = [8,6,7,1,0]
Output: "8760"

Example 3:

Input: digits = [1]
Output: ""

Example 4:

Input: digits = [0,0,0,0,0,0]
Output: "0"

Constraints:

  • 1 <= digits.length <= 10^4
  • 0 <= digits[i] <= 9
  • The returning answer must not contain unnecessary leading zeros.

Solution: Greedy + Math + Counting sort

Count the numbers of each digit.
if sum % 3 == 0, we can use all digits.
if sum % 1 == 0, we can remove one digits among {1, 4, 7} => sum % 3 == 0
if sum % 2 == 0, we can remove one digits among {2, 5, 8} => sum % 3 == 0
if sum % 2 == 0, we have to remove two digits among {1, 4, 7} => sum % 3 == 0
if sum % 1 == 0, we have to remove two digits among {2, 5, 8} => sum % 3 == 0

Time complexity: O(n)
Space complexity: O(n) w/ output, O(1) w/o output

C++

Python3

花花酱 LeetCode 1362. Closest Divisors

Given an integer num, find the closest two integers in absolute difference whose product equals num + 1 or num + 2.

Return the two integers in any order.

Example 1:

Input: num = 8
Output: [3,3]
Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.

Example 2:

Input: num = 123
Output: [5,25]

Example 3:

Input: num = 999
Output: [40,25]

Constraints:

  • 1 <= num <= 10^9

Solution: Brute Force

Time complexity: O(sqrt(n))
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 1361. Validate Binary Tree Nodes

You have n binary tree nodes numbered from 0 to n - 1 where node i has two children leftChild[i] and rightChild[i], return true if and only if all the given nodes form exactly one valid binary tree.

If node i has no left child then leftChild[i] will equal -1, similarly for the right child.

Note that the nodes have no values and that we only use the node numbers in this problem.

Example 1:

Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,-1,-1,-1]
Output: true

Example 2:

Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,3,-1,-1]
Output: false

Example 3:

Input: n = 2, leftChild = [1,0], rightChild = [-1,-1]
Output: false

Example 4:

Input: n = 6, leftChild = [1,-1,-1,4,-1,-1], rightChild = [2,-1,-1,5,-1,-1]
Output: false

Constraints:

  • 1 <= n <= 10^4
  • leftChild.length == rightChild.length == n
  • -1 <= leftChild[i], rightChild[i] <= n - 1

Solution: Count in-degrees for each node

in degree must <= 1 and there must be exact one node that has 0 in-degree.

Time complexity: O(n)
Space complexity: O(n)

C++