Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 993. Cousins in Binary Tree

In a binary tree, the root node is at depth 0, and children of each depth k node are at depth k+1.

Two nodes of a binary tree are cousins if they have the same depth, but have different parents.

We are given the root of a binary tree with unique values, and the values x and y of two different nodes in the tree.

Return true if and only if the nodes corresponding to the values x and y are cousins.

Example 1:

Input: root = [1,2,3,4], x = 4, y = 3
Output: false

Example 2:

Input: root = [1,2,3,null,4,null,5], x = 5, y = 4
Output: true

Example 3:

Input: root = [1,2,3,null,4], x = 2, y = 3
Output: false

Note:

  1. The number of nodes in the tree will be between 2 and 100.
  2. Each node has a unique integer value from 1 to 100.

Solution: Preorder traversal

Time complexity: O(n)
Space complexity: O(n)

C++

Python3

LeetCode 进入千题时代该如何刷题?



题目列表:https://bit.ly/2E8yBHq

总结一下:

  • 大家的刷题经验都比我丰富,找到最适合自己的方法就好了
  • 200~300题刷2-3边,至少100+小时的投入
  • 同一类型题目一起刷,总结规律和差异
  • 多看别人的(优秀)代码
  • 完整的手写实现,不要copy代码,增强肌肉记忆(视频中没提到)
  • 培养代码风格



花花酱 LeetCode 74. Search a 2D Matrix

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Example 2:

Solution: Binary Search

Treat the 2D array as a 1D array. matrix[index / cols][index % cols]

Time complexity: O(log(m*n))
Space complexity: O(1)

C++

花花酱 LeetCode 133. Clone Graph

Given the head of a graph, return a deep copy (clone) of the graph. Each node in the graph contains a label (int) and a list (List[UndirectedGraphNode]) of its neighbors. There is an edge between the given node and each of the nodes in its neighbors.
OJ’s undirected graph serialization (so you can understand error output):

Nodes are labeled uniquely.We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
      / \
     /   \
    0 --- 2
         / \
         \_/

Note: The information about the tree serialization is only meant so that you can understand error output if you get a wrong answer. You don’t need to understand the serialization to solve the problem.

Solution: Queue + Hashtable

Time complexity: O(V+E)
Space complexity: O(V+E)

C++