Press "Enter" to skip to content

花花酱 LeetCode 2092. Find All People With Secret

You are given an integer n indicating there are n people numbered from 0 to n - 1. You are also given a 0-indexed 2D integer array meetings where meetings[i] = [xi, yi, timei] indicates that person xi and person yi have a meeting at timei. A person may attend multiple meetings at the same time. Finally, you are given an integer firstPerson.

Person 0 has a secret and initially shares the secret with a person firstPerson at time 0. This secret is then shared every time a meeting takes place with a person that has the secret. More formally, for every meeting, if a person xi has the secret at timei, then they will share the secret with person yi, and vice versa.

The secrets are shared instantaneously. That is, a person may receive the secret and share it with people in other meetings within the same time frame.

Return a list of all the people that have the secret after all the meetings have taken place. You may return the answer in any order.

Example 1:

Input: n = 6, meetings = [[1,2,5],[2,3,8],[1,5,10]], firstPerson = 1
Output: [0,1,2,3,5]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 5, person 1 shares the secret with person 2.
At time 8, person 2 shares the secret with person 3.
At time 10, person 1 shares the secret with person 5.​​​​
Thus, people 0, 1, 2, 3, and 5 know the secret after all the meetings.

Example 2:

Input: n = 4, meetings = [[3,1,3],[1,2,2],[0,3,3]], firstPerson = 3
Output: [0,1,3]
Explanation:
At time 0, person 0 shares the secret with person 3.
At time 2, neither person 1 nor person 2 know the secret.
At time 3, person 3 shares the secret with person 0 and person 1.
Thus, people 0, 1, and 3 know the secret after all the meetings.

Example 3:

Input: n = 5, meetings = [[3,4,2],[1,2,1],[2,3,1]], firstPerson = 1
Output: [0,1,2,3,4]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 1, person 1 shares the secret with person 2, and person 2 shares the secret with person 3.
Note that person 2 can share the secret at the same time as receiving it.
At time 2, person 3 shares the secret with person 4.
Thus, people 0, 1, 2, 3, and 4 know the secret after all the meetings.

Example 4:

Input: n = 6, meetings = [[0,2,1],[1,3,1],[4,5,1]], firstPerson = 1
Output: [0,1,2,3]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 1, person 0 shares the secret with person 2, and person 1 shares the secret with person 3.
Thus, people 0, 1, 2, and 3 know the secret after all the meetings.

Constraints:

  • 2 <= n <= 105
  • 1 <= meetings.length <= 105
  • meetings[i].length == 3
  • 0 <= xi, y<= n - 1
  • xi != yi
  • 1 <= timei <= 105
  • 1 <= firstPerson <= n - 1

Solution: Union Find

Sorting meetings by time.

At each time stamp, union people who meet.
Key step: “un-union” people if they DO NOT connected to 0 / known the secret after each timestamp.

Time complexity: O(nlogn + m + n)
Space complexity: O(m + n)

C++

Related Problems

请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website
您可以通过在亚马逊上购物(任意商品)来支持我们

Paypal
Venmo
huahualeetcode
微信打赏

Be First to Comment

Leave a Reply