Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1444. Number of Ways of Cutting a Pizza

Given a rectangular pizza represented as a rows x cols matrix containing the following characters: 'A' (an apple) and '.' (empty cell) and given the integer k. You have to cut the pizza into k pieces using k-1 cuts. 

For each cut you choose the direction: vertical or horizontal, then you choose a cut position at the cell boundary and cut the pizza into two pieces. If you cut the pizza vertically, give the left part of the pizza to a person. If you cut the pizza horizontally, give the upper part of the pizza to a person. Give the last piece of pizza to the last person.

Return the number of ways of cutting the pizza such that each piece contains at least one apple. Since the answer can be a huge number, return this modulo 10^9 + 7.

Example 1:

Input: pizza = ["A..","AAA","..."], k = 3
Output: 3 
Explanation: The figure above shows the three ways to cut the pizza. Note that pieces must contain at least one apple.

Example 2:

Input: pizza = ["A..","AA.","..."], k = 3
Output: 1

Example 3:

Input: pizza = ["A..","A..","..."], k = 1
Output: 1

Constraints:

  • 1 <= rows, cols <= 50
  • rows == pizza.length
  • cols == pizza[i].length
  • 1 <= k <= 10
  • pizza consists of characters 'A' and '.' only.

Solution: DP

dp(n, m, k) := # of ways to cut pizza[n:N][m:M] with k cuts.

dp(n, m, k) = sum(hasApples(n, m, N – 1, y) * dp(y + 1, n, k – 1) for y in range(n, M)) + sum(hasApples(n, m, x, M – 1) * dp(m, x + 1, k – 1) for x in range(n, M))

Time complexity: O(M*N*(M+N)*K) = O(N^3 * K)
Space complexity: O(M*N*K)

C++

花花酱 LeetCode 1442. Count Triplets That Can Form Two Arrays of Equal XOR

Given an array of integers arr.

We want to select three indices ij and k where (0 <= i < j <= k < arr.length).

Let’s define a and b as follows:

  • a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
  • b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]

Note that ^ denotes the bitwise-xor operation.

Return the number of triplets (ij and k) Where a == b.

Example 1:

Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)

Example 2:

Input: arr = [1,1,1,1,1]
Output: 10

Example 3:

Input: arr = [2,3]
Output: 0

Example 4:

Input: arr = [1,3,5,7,9]
Output: 3

Example 5:

Input: arr = [7,11,12,9,5,2,7,17,22]
Output: 8

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[i] <= 10^8

Solution 1: Brute Force (TLE)

Time complexity: O(n^4)
Space complexity: O(1)

C++

Solution 2: Prefix XORs

Let xors[i] = arr[0] ^ arr[1] ^ … ^ arr[i-1]
arr[i] ^ arr[i + 1] ^ … ^ arr[j – 1] = (arr[0] ^ … ^ arr[j – 1]) ^ (arr[0] ^ … ^ arr[i-1]) = xors[j] ^ xors[i]

We then can compute a and b in O(1) time.

Time complexity: O(n^3)
Space complexity: O(n)

C++

Solution 3: Prefix XORs II

a = arr[i] ^ arr[i + 1] ^ … ^ arr[j – 1]
b = arr[j] ^ arr[j + 1] ^ … ^ arr[k]
a == b => a ^ b == 0
XORs(i ~ k) == 0
XORS(0 ~ k) ^ XORs(0 ~ i – 1) = 0

Problem => find all pairs of (i – 1, k) such that xors[k+1] == xors[i]
For each pair (i – 1, k), there are k – i positions we can insert j.

Time complexity: O(n^2)
Space complexity: O(1)

C++

Solution 3: HashTable

Similar to target sum, use a hashtable to store the frequency of each prefix xors.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1441. Build an Array With Stack Operations

Given an array target and an integer n. In each iteration, you will read a number from  list = {1,2,3..., n}.

Build the target array using the following operations:

  • Push: Read a new element from the beginning list, and push it in the array.
  • Pop: delete the last element of the array.
  • If the target array is already built, stop reading more elements.

You are guaranteed that the target array is strictly increasing, only containing numbers between 1 to n inclusive.

Return the operations to build the target array.

You are guaranteed that the answer is unique.

Example 1:

Input: target = [1,3], n = 3
Output: ["Push","Push","Pop","Push"]
Explanation: 
Read number 1 and automatically push in the array -> [1]
Read number 2 and automatically push in the array then Pop it -> [1]
Read number 3 and automatically push in the array -> [1,3]

Example 2:

Input: target = [1,2,3], n = 3
Output: ["Push","Push","Push"]

Example 3:

Input: target = [1,2], n = 4
Output: ["Push","Push"]
Explanation: You only need to read the first 2 numbers and stop.

Example 4:

Input: target = [2,3,4], n = 4
Output: ["Push","Pop","Push","Push","Push"]

Constraints:

  • 1 <= target.length <= 100
  • 1 <= target[i] <= 100
  • 1 <= n <= 100
  • target is strictly increasing.

Solution: Simulation

For each number in target, keep discarding i if i != num by “Push” + “Pop”, until i == num. One more “Push”.

Time complexity: O(n)
Space complexity: O(n) or O(1) w/o output.

C++

花花酱 LeetCode 1443. Minimum Time to Collect All Apples in a Tree

Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. Return the minimum time in seconds you have to spend in order to collect all apples in the tree starting at vertex 0 and coming back to this vertex.

The edges of the undirected tree are given in the array edges, where edges[i] = [fromi, toi] means that exists an edge connecting the vertices fromi and toi. Additionally, there is a boolean array hasApple, where hasApple[i] = true means that vertex i has an apple, otherwise, it does not have any apple.

Example 1:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
Output: 8 
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.  

Example 2:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
Output: 6
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.  

Example 3:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
Output: 0

Constraints:

  • 1 <= n <= 10^5
  • edges.length == n-1
  • edges[i].length == 2
  • 0 <= fromi, toi <= n-1
  • fromi < toi
  • hasApple.length == n

Solution: DFS

Build the graph (tree) and DFS.

Time complexity: O(n)
Space complexity: O(n)

C++

if edge is not ordered

C++

玩转Linux命令行 – 事件处理 – EP3

Download Data

download.sh

V1

V2

V3