Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2002. Maximum Product of the Length of Two Palindromic Subsequences

Given a string s, find two disjoint palindromic subsequences of s such that the product of their lengths is maximized. The two subsequences are disjoint if they do not both pick a character at the same index.

Return the maximum possible product of the lengths of the two palindromic subsequences.

subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters. A string is palindromic if it reads the same forward and backward.

Example 1:

example-1
Input: s = "leetcodecom"
Output: 9
Explanation: An optimal solution is to choose "ete" for the 1st subsequence and "cdc" for the 2nd subsequence.
The product of their lengths is: 3 * 3 = 9.

Example 2:

Input: s = "bb"
Output: 1
Explanation: An optimal solution is to choose "b" (the first character) for the 1st subsequence and "b" (the second character) for the 2nd subsequence.
The product of their lengths is: 1 * 1 = 1.

Example 3:

Input: s = "accbcaxxcxx"
Output: 25
Explanation: An optimal solution is to choose "accca" for the 1st subsequence and "xxcxx" for the 2nd subsequence.
The product of their lengths is: 5 * 5 = 25.

Constraints:

  • 2 <= s.length <= 12
  • s consists of lowercase English letters only.

Solution 1: DFS

Time complexity: O(3n*n)
Space complexity: O(n)

C++

Solution: Subsets + Bitmask + All Pairs

Time complexity: O(22n)
Space complexity: O(2n)

C++

花花酱 LeetCode 2001. Number of Pairs of Interchangeable Rectangles

You are given n rectangles represented by a 0-indexed 2D integer array rectangles, where rectangles[i] = [widthi, heighti] denotes the width and height of the ith rectangle.

Two rectangles i and j (i < j) are considered interchangeable if they have the same width-to-height ratio. More formally, two rectangles are interchangeable if widthi/heighti == widthj/heightj (using decimal division, not integer division).

Return the number of pairs of interchangeable rectangles in rectangles.

Example 1:

Input: rectangles = [[4,8],[3,6],[10,20],[15,30]]
Output: 6
Explanation: The following are the interchangeable pairs of rectangles by index (0-indexed):
- Rectangle 0 with rectangle 1: 4/8 == 3/6.
- Rectangle 0 with rectangle 2: 4/8 == 10/20.
- Rectangle 0 with rectangle 3: 4/8 == 15/30.
- Rectangle 1 with rectangle 2: 3/6 == 10/20.
- Rectangle 1 with rectangle 3: 3/6 == 15/30.
- Rectangle 2 with rectangle 3: 10/20 == 15/30.

Example 2:

Input: rectangles = [[4,5],[7,8]]
Output: 0
Explanation: There are no interchangeable pairs of rectangles.

Constraints:

  • n == rectangles.length
  • 1 <= n <= 105
  • rectangles[i].length == 2
  • 1 <= widthi, heighti <= 105

Solution: Hashtable

Use aspect ratio as the key.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2000. Reverse Prefix of Word

Given a 0-indexed string word and a character chreverse the segment of word that starts at index 0 and ends at the index of the first occurrence of ch (inclusive). If the character ch does not exist in word, do nothing.

  • For example, if word = "abcdefd" and ch = "d", then you should reverse the segment that starts at 0 and ends at 3 (inclusive). The resulting string will be "dcbaefd".

Return the resulting string.

Example 1:

Input: word = "abcdefd", ch = "d"
Output: "dcbaefd"
Explanation: The first occurrence of "d" is at index 3. 
Reverse the part of word from 0 to 3 (inclusive), the resulting string is "dcbaefd".

Example 2:

Input: word = "xyxzxe", ch = "z"
Output: "zxyxxe"
Explanation: The first and only occurrence of "z" is at index 3.
Reverse the part of word from 0 to 3 (inclusive), the resulting string is "zxyxxe".

Example 3:

Input: word = "abcd", ch = "z"
Output: "abcd"
Explanation: "z" does not exist in word.
You should not do any reverse operation, the resulting string is "abcd".

Constraints:

  • 1 <= word.length <= 250
  • word consists of lowercase English letters.
  • ch is a lowercase English letter.

Solution: Brute Force

Time complexity: O(n)
Space complexity: O(n) / O(1)

C++

花花酱 LeetCode 2050. Parallel Courses III

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

  • You may start taking a course at any time if the prerequisites are met.
  • Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

Constraints:

  • 1 <= n <= 5 * 104
  • 0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
  • relations[j].length == 2
  • 1 <= prevCoursej, nextCoursej <= n
  • prevCoursej != nextCoursej
  • All the pairs [prevCoursej, nextCoursej] are unique.
  • time.length == n
  • 1 <= time[i] <= 104
  • The given graph is a directed acyclic graph.

Solution: Topological Sorting

Time complexity: O(V+E)
Space complexity: O(V+E)

C++

Python3

花花酱 LeetCode 2076. Process Restricted Friend Requests

You are given an integer n indicating the number of people in a network. Each person is labeled from 0 to n - 1.

You are also given a 0-indexed 2D integer array restrictions, where restrictions[i] = [xi, yi] means that person xi and person yi cannot become friends,either directly or indirectly through other people.

Initially, no one is friends with each other. You are given a list of friend requests as a 0-indexed 2D integer array requests, where requests[j] = [uj, vj] is a friend request between person uj and person vj.

A friend request is successful if uj and vj can be friends. Each friend request is processed in the given order (i.e., requests[j] occurs before requests[j + 1]), and upon a successful request, uj and vj become direct friends for all future friend requests.

Return boolean array result, where each result[j] is true if the jth friend request is successful or false if it is not.

Note: If uj and vj are already direct friends, the request is still successful.

Example 1:

Input: n = 3, restrictions = [[0,1]], requests = [[0,2],[2,1]]
Output: [true,false]
Explanation:
Request 0: Person 0 and person 2 can be friends, so they become direct friends. 
Request 1: Person 2 and person 1 cannot be friends since person 0 and person 1 would be indirect friends (1--2--0).

Example 2:

Input: n = 3, restrictions = [[0,1]], requests = [[1,2],[0,2]]
Output: [true,false]
Explanation:
Request 0: Person 1 and person 2 can be friends, so they become direct friends.
Request 1: Person 0 and person 2 cannot be friends since person 0 and person 1 would be indirect friends (0--2--1).

Example 3:

Input: n = 5, restrictions = [[0,1],[1,2],[2,3]], requests = [[0,4],[1,2],[3,1],[3,4]]
Output: [true,false,true,false]
Explanation:
Request 0: Person 0 and person 4 can be friends, so they become direct friends.
Request 1: Person 1 and person 2 cannot be friends since they are directly restricted.
Request 2: Person 3 and person 1 can be friends, so they become direct friends.
Request 3: Person 3 and person 4 cannot be friends since person 0 and person 1 would be indirect friends (0--4--3--1).

Constraints:

  • 2 <= n <= 1000
  • 0 <= restrictions.length <= 1000
  • restrictions[i].length == 2
  • 0 <= xi, yi <= n - 1
  • xi != yi
  • 1 <= requests.length <= 1000
  • requests[j].length == 2
  • 0 <= uj, vj <= n - 1
  • uj != vj

Solution: Union Find / Brute Force

For each request, check all restrictions.

Time complexity: O(req * res)
Space complexity: O(n)

C++