Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2825. Make String a Subsequence Using Cyclic Increments

You are given two 0-indexed strings str1 and str2.

In an operation, you select a set of indices in str1, and for each index i in the set, increment str1[i] to the next character cyclically. That is 'a' becomes 'b''b' becomes 'c', and so on, and 'z' becomes 'a'.

Return true if it is possible to make str2 a subsequence of str1 by performing the operation at most onceand false otherwise.

Note: A subsequence of a string is a new string that is formed from the original string by deleting some (possibly none) of the characters without disturbing the relative positions of the remaining characters.

Example 1:

Input: str1 = "abc", str2 = "ad"
Output: true
Explanation: Select index 2 in str1.
Increment str1[2] to become 'd'. 
Hence, str1 becomes "abd" and str2 is now a subsequence. Therefore, true is returned.

Example 2:

Input: str1 = "zc", str2 = "ad"
Output: true
Explanation: Select indices 0 and 1 in str1. 
Increment str1[0] to become 'a'. 
Increment str1[1] to become 'd'. 
Hence, str1 becomes "ad" and str2 is now a subsequence. Therefore, true is returned.

Example 3:

Input: str1 = "ab", str2 = "d"
Output: false
Explanation: In this example, it can be shown that it is impossible to make str2 a subsequence of str1 using the operation at most once. 
Therefore, false is returned.

Constraints:

  • 1 <= str1.length <= 105
  • 1 <= str2.length <= 105
  • str1 and str2 consist of only lowercase English letters.

Solution: Two pointers

s1[i] and s2[j] can match if
s1[i] == s2[j] or inc(s1[i]) == s2[j]

If matched: ++i; ++j else ++i.

Time complexity: O(n)
Space complexity: O(1)

C++

Iterator version

C++

花花酱 LeetCode 2824. Count Pairs Whose Sum is Less than Target

Given a 0-indexed integer array nums of length n and an integer target, return the number of pairs(i, j)where0 <= i < j < nandnums[i] + nums[j] < target.

Example 1:

Input: nums = [-1,1,2,3,1], target = 2
Output: 3
Explanation: There are 3 pairs of indices that satisfy the conditions in the statement:
- (0, 1) since 0 < 1 and nums[0] + nums[1] = 0 < target
- (0, 2) since 0 < 2 and nums[0] + nums[2] = 1 < target 
- (0, 4) since 0 < 4 and nums[0] + nums[4] = 0 < target
Note that (0, 3) is not counted since nums[0] + nums[3] is not strictly less than the target.

Example 2:

Input: nums = [-6,2,5,-2,-7,-1,3], target = -2
Output: 10
Explanation: There are 10 pairs of indices that satisfy the conditions in the statement:
- (0, 1) since 0 < 1 and nums[0] + nums[1] = -4 < target
- (0, 3) since 0 < 3 and nums[0] + nums[3] = -8 < target
- (0, 4) since 0 < 4 and nums[0] + nums[4] = -13 < target
- (0, 5) since 0 < 5 and nums[0] + nums[5] = -7 < target
- (0, 6) since 0 < 6 and nums[0] + nums[6] = -3 < target
- (1, 4) since 1 < 4 and nums[1] + nums[4] = -5 < target
- (3, 4) since 3 < 4 and nums[3] + nums[4] = -9 < target
- (3, 5) since 3 < 5 and nums[3] + nums[5] = -3 < target
- (4, 5) since 4 < 5 and nums[4] + nums[5] = -8 < target
- (4, 6) since 4 < 6 and nums[4] + nums[6] = -4 < target

Constraints:

  • 1 <= nums.length == n <= 50
  • -50 <= nums[i], target <= 50

Solution 1: Brute force

Enumerate all pairs.

Time complexity: O(n2)
Space complexity: O(1)

C++

Solution 2: Two Pointers

Sort the numbers.

Use two pointers i, and j.
Set i to 0 and j to n – 1.
while (nums[i] + nums[j] >= target) –j
then we have nums[i] + nums[k] < target (i < k <= j), in total (j – i) pairs.
++i, move to the next starting number.
Time complexity: O(nlogn + n)
Space complexity: O(1)

C++

花花酱 LeetCode 2815. Max Pair Sum in an Array

You are given a 0-indexed integer array nums. You have to find the maximum sum of a pair of numbers from nums such that the maximum digit in both numbers are equal.

Return the maximum sum or -1 if no such pair exists.

Example 1:

Input: nums = [51,71,17,24,42]
Output: 88
Explanation: 
For i = 1 and j = 2, nums[i] and nums[j] have equal maximum digits with a pair sum of 71 + 17 = 88. 
For i = 3 and j = 4, nums[i] and nums[j] have equal maximum digits with a pair sum of 24 + 42 = 66.
It can be shown that there are no other pairs with equal maximum digits, so the answer is 88.

Example 2:

Input: nums = [1,2,3,4]
Output: -1
Explanation: No pair exists in nums with equal maximum digits.

Constraints:

  • 2 <= nums.length <= 100
  • 1 <= nums[i] <= 104

Solution: Brute Force

Enumerate all pairs of nums and check their sum and max digit.

Time complexity: O(n2)
Space complexity: O(1)

C++

花花酱 LeetCode 2771. Longest Non-decreasing Subarray From Two Arrays

You are given two 0-indexed integer arrays nums1 and nums2 of length n.

Let’s define another 0-indexed integer array, nums3, of length n. For each index i in the range [0, n - 1], you can assign either nums1[i] or nums2[i] to nums3[i].

Your task is to maximize the length of the longest non-decreasing subarray in nums3 by choosing its values optimally.

Return an integer representing the length of the longest non-decreasing subarray in nums3.

Note: subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums1 = [2,3,1], nums2 = [1,2,1]
Output: 2
Explanation: One way to construct nums3 is: 
nums3 = [nums1[0], nums2[1], nums2[2]] => [2,2,1]. 
The subarray starting from index 0 and ending at index 1, [2,2], forms a non-decreasing subarray of length 2. 
We can show that 2 is the maximum achievable length.

Example 2:

Input: nums1 = [1,3,2,1], nums2 = [2,2,3,4]
Output: 4
Explanation: One way to construct nums3 is: 
nums3 = [nums1[0], nums2[1], nums2[2], nums2[3]] => [1,2,3,4]. 
The entire array forms a non-decreasing subarray of length 4, making it the maximum achievable length.

Example 3:

Input: nums1 = [1,1], nums2 = [2,2]
Output: 2
Explanation: One way to construct nums3 is: 
nums3 = [nums1[0], nums1[1]] => [1,1]. 
The entire array forms a non-decreasing subarray of length 2, making it the maximum achievable length.

Constraints:

  • 1 <= nums1.length == nums2.length == n <= 105
  • 1 <= nums1[i], nums2[i] <= 109

Solution: DP

Let dp1(i), dp2(i) denote the length of the Longest Non-decreasing Subarray ends with nums1[i] and nums2[i] respectively.

init: dp1(0) = dp2(0) = 1

dp1(i) = max(dp1(i – 1) + 1 if nums1[i] >= nums1[i – 1] else 1, dp2(i – 1) + 1 if nums1[i] >= nums2[i – 1] else 1)
dp2(i) = max(dp1(i – 1) + 1 if nums2[i] >= nums1[i – 1] else 1, dp2(i – 1) + 1 if nums2[i] >= nums2[i – 1] else 1)

ans = max(dp1, dp2)

Time complexity: O(n)
Space complexity: O(n) -> O(1)

Python3

C++

花花酱 LeetCode 2770. Maximum Number of Jumps to Reach the Last Index

You are given a 0-indexed array nums of n integers and an integer target.

You are initially positioned at index 0. In one step, you can jump from index i to any index j such that:

  • 0 <= i < j < n
  • -target <= nums[j] - nums[i] <= target

Return the maximum number of jumps you can make to reach index n - 1.

If there is no way to reach index n - 1, return -1.

Example 1:

Input: nums = [1,3,6,4,1,2], target = 2
Output: 3
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the following jumping sequence:
- Jump from index 0 to index 1. 
- Jump from index 1 to index 3.
- Jump from index 3 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 3 jumps. Hence, the answer is 3. 

Example 2:

Input: nums = [1,3,6,4,1,2], target = 3
Output: 5
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the following jumping sequence:
- Jump from index 0 to index 1.
- Jump from index 1 to index 2.
- Jump from index 2 to index 3.
- Jump from index 3 to index 4.
- Jump from index 4 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 5 jumps. Hence, the answer is 5. 

Example 3:

Input: nums = [1,3,6,4,1,2], target = 0
Output: -1
Explanation: It can be proven that there is no jumping sequence that goes from 0 to n - 1. Hence, the answer is -1. 

Constraints:

  • 2 <= nums.length == n <= 1000
  • -109 <= nums[i] <= 109
  • 0 <= target <= 2 * 109

Solution: DP

Let dp(i) denotes the maximum jumps from index i to index n-1.

For each index i, try jumping to all possible index j.

dp(i) = max(1 + dp(j)) if j > i and abs(nums[j] – nums[i) <= target else -1

Time complexity: O(n2)
Space complexity: O(n)

Python3