Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2092. Find All People With Secret

You are given an integer n indicating there are n people numbered from 0 to n - 1. You are also given a 0-indexed 2D integer array meetings where meetings[i] = [xi, yi, timei] indicates that person xi and person yi have a meeting at timei. A person may attend multiple meetings at the same time. Finally, you are given an integer firstPerson.

Person 0 has a secret and initially shares the secret with a person firstPerson at time 0. This secret is then shared every time a meeting takes place with a person that has the secret. More formally, for every meeting, if a person xi has the secret at timei, then they will share the secret with person yi, and vice versa.

The secrets are shared instantaneously. That is, a person may receive the secret and share it with people in other meetings within the same time frame.

Return a list of all the people that have the secret after all the meetings have taken place. You may return the answer in any order.

Example 1:

Input: n = 6, meetings = [[1,2,5],[2,3,8],[1,5,10]], firstPerson = 1
Output: [0,1,2,3,5]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 5, person 1 shares the secret with person 2.
At time 8, person 2 shares the secret with person 3.
At time 10, person 1 shares the secret with person 5.​​​​
Thus, people 0, 1, 2, 3, and 5 know the secret after all the meetings.

Example 2:

Input: n = 4, meetings = [[3,1,3],[1,2,2],[0,3,3]], firstPerson = 3
Output: [0,1,3]
Explanation:
At time 0, person 0 shares the secret with person 3.
At time 2, neither person 1 nor person 2 know the secret.
At time 3, person 3 shares the secret with person 0 and person 1.
Thus, people 0, 1, and 3 know the secret after all the meetings.

Example 3:

Input: n = 5, meetings = [[3,4,2],[1,2,1],[2,3,1]], firstPerson = 1
Output: [0,1,2,3,4]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 1, person 1 shares the secret with person 2, and person 2 shares the secret with person 3.
Note that person 2 can share the secret at the same time as receiving it.
At time 2, person 3 shares the secret with person 4.
Thus, people 0, 1, 2, 3, and 4 know the secret after all the meetings.

Example 4:

Input: n = 6, meetings = [[0,2,1],[1,3,1],[4,5,1]], firstPerson = 1
Output: [0,1,2,3]
Explanation:
At time 0, person 0 shares the secret with person 1.
At time 1, person 0 shares the secret with person 2, and person 1 shares the secret with person 3.
Thus, people 0, 1, 2, and 3 know the secret after all the meetings.

Constraints:

  • 2 <= n <= 105
  • 1 <= meetings.length <= 105
  • meetings[i].length == 3
  • 0 <= xi, y<= n - 1
  • xi != yi
  • 1 <= timei <= 105
  • 1 <= firstPerson <= n - 1

Solution: Union Find

Sorting meetings by time.

At each time stamp, union people who meet.
Key step: “un-union” people if they DO NOT connected to 0 / known the secret after each timestamp.

Time complexity: O(nlogn + m + n)
Space complexity: O(m + n)

C++

Related Problems

花花酱 LeetCode 2091. Removing Minimum and Maximum From Array

You are given a 0-indexed array of distinct integers nums.

There is an element in nums that has the lowest value and an element that has the highest value. We call them the minimum and maximum respectively. Your goal is to remove both these elements from the array.

deletion is defined as either removing an element from the front of the array or removing an element from the back of the array.

Return the minimum number of deletions it would take to remove both the minimum and maximum element from the array.

Example 1:

Input: nums = [2,10,7,5,4,1,8,6]
Output: 5
Explanation: 
The minimum element in the array is nums[5], which is 1.
The maximum element in the array is nums[1], which is 10.
We can remove both the minimum and maximum by removing 2 elements from the front and 3 elements from the back.
This results in 2 + 3 = 5 deletions, which is the minimum number possible.

Example 2:

Input: nums = [0,-4,19,1,8,-2,-3,5]
Output: 3
Explanation: 
The minimum element in the array is nums[1], which is -4.
The maximum element in the array is nums[2], which is 19.
We can remove both the minimum and maximum by removing 3 elements from the front.
This results in only 3 deletions, which is the minimum number possible.

Example 3:

Input: nums = [101]
Output: 1
Explanation:  
There is only one element in the array, which makes it both the minimum and maximum element.
We can remove it with 1 deletion.

Constraints:

  • 1 <= nums.length <= 105
  • -105 <= nums[i] <= 105
  • The integers in nums are distinct.

Solution: Three ways

There are only three ways to remove min/max elements.
1) Remove front elements
2) Remove back elements
3) Remove one with front elements, and another one with back elements.

Just find the best way to do it.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2090. K Radius Subarray Averages

You are given a 0-indexed array nums of n integers, and an integer k.

The k-radius average for a subarray of nums centered at some index i with the radius k is the average of all elements in nums between the indices i - k and i + k (inclusive). If there are less than k elements before or after the index i, then the k-radius average is -1.

Build and return an array avgs of length n where avgs[i] is the k-radius average for the subarray centered at index i.

The average of x elements is the sum of the x elements divided by x, using integer division. The integer division truncates toward zero, which means losing its fractional part.

  • For example, the average of four elements 231, and 5 is (2 + 3 + 1 + 5) / 4 = 11 / 4 = 2.75, which truncates to 2.

Example 1:

Input: nums = [7,4,3,9,1,8,5,2,6], k = 3
Output: [-1,-1,-1,5,4,4,-1,-1,-1]
Explanation:
- avg[0], avg[1], and avg[2] are -1 because there are less than k elements before each index.
- The sum of the subarray centered at index 3 with radius 3 is: 7 + 4 + 3 + 9 + 1 + 8 + 5 = 37.
  Using integer division, avg[3] = 37 / 7 = 5.
- For the subarray centered at index 4, avg[4] = (4 + 3 + 9 + 1 + 8 + 5 + 2) / 7 = 4.
- For the subarray centered at index 5, avg[5] = (3 + 9 + 1 + 8 + 5 + 2 + 6) / 7 = 4.
- avg[6], avg[7], and avg[8] are -1 because there are less than k elements after each index.

Example 2:

Input: nums = [100000], k = 0
Output: [100000]
Explanation:
- The sum of the subarray centered at index 0 with radius 0 is: 100000.
  avg[0] = 100000 / 1 = 100000.

Example 3:

Input: nums = [8], k = 100000
Output: [-1]
Explanation: 
- avg[0] is -1 because there are less than k elements before and after index 0.

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • 0 <= nums[i], k <= 105

Solution: Sliding Window

We compute i – k’s average at position i.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2089. Find Target Indices After Sorting Array

You are given a 0-indexed integer array nums and a target element target.

target index is an index i such that nums[i] == target.

Return a list of the target indices of nums after sorting nums in non-decreasing order. If there are no target indices, return an empty list. The returned list must be sorted in increasing order.

Example 1:

Input: nums = [1,2,5,2,3], target = 2
Output: [1,2]
Explanation: After sorting, nums is [1,2,2,3,5].
The indices where nums[i] == 2 are 1 and 2.

Example 2:

Input: nums = [1,2,5,2,3], target = 3
Output: [3]
Explanation: After sorting, nums is [1,2,2,3,5].
The index where nums[i] == 3 is 3.

Example 3:

Input: nums = [1,2,5,2,3], target = 5
Output: [4]
Explanation: After sorting, nums is [1,2,2,3,5].
The index where nums[i] == 5 is 4.

Example 4:

Input: nums = [1,2,5,2,3], target = 4
Output: []
Explanation: There are no elements in nums with value 4.

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i], target <= 100

Solution: Sorting

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 137. Single Number II

Given an integer array nums where every element appears three times except for one, which appears exactly onceFind the single element and return it.

You must implement a solution with a linear runtime complexity and use only constant extra space.

Example 1:

Input: nums = [2,2,3,2]
Output: 3

Example 2:

Input: nums = [0,1,0,1,0,1,99]
Output: 99

Constraints:

  • 1 <= nums.length <= 3 * 104
  • -231 <= nums[i] <= 231 - 1
  • Each element in nums appears exactly three times except for one element which appears once.

Solution: Bit by bit

Since every number appears three times, the i-th bit must be a factor of 3, if not, that bit belongs to the single number.

Time complexity: O(32n)
Space complexity: O(1)

C++

Related Problems